首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   17篇
  国内免费   6篇
  2022年   3篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   17篇
  2013年   12篇
  2012年   14篇
  2011年   10篇
  2010年   5篇
  2009年   9篇
  2008年   14篇
  2007年   13篇
  2006年   14篇
  2005年   9篇
  2004年   6篇
  2003年   14篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1980年   1篇
  1976年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
71.
Exosomes have recently emerged as a pivotal mediator of many physiological and pathological processes. However, the role of exosomes in proliferative vitreoretinopathy (PVR) has not been reported. In this study, we aimed to investigate the role of exosomes in PVR. Transforming growth factor beta 2 (TGFß‐2) was used to induce epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, as an in vitro model of PVR. Exosomes from normal and EMTed RPE cells were extracted and identified. We incubated extracted exosomes with recipient RPE cells, and co‐cultured EMTed RPE cells and recipient RPE cells in the presence of the exosome inhibitor GW4869. Both experiments suggested that there are further EMT‐promoting effects of exosomes from EMTed RPE cells. MicroRNA sequencing was also performed to identify the miRNA profiles in exosomes from both groups. We identified 34 differentially expressed exosomal miRNAs (P <. 05). Importantly, miR‐543 was found in exosomes from EMTed RPE cells, and miR‐543‐enriched exosomes significantly induced the EMT of recipient RPE cells. Our study demonstrates that exosomal miRNA is differentially expressed in RPE cells during EMT and that these exosomal miRNAs may play pivotal roles in EMT induction. Our results highlight the importance of exosomes as cellular communicators within the microenvironment of PVR.  相似文献   
72.
Proliferative vitreoretinopathy (PVR) is a severe ocular disease which results in complex retinal detachment and irreversible vision loss. The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is considered to be critical in the pathogenesis of PVR. In this study, we focused on the potential impact of keratin 8 (KRT8) phosphorylation and autophagy on TGF-β2–induced EMT of RPE cells and explored the relationship between them. Using immunofluorescence and Western blot analysis, the co-localization of KRT8 and autophagy marker, as well as the abundance of phosphorylated KRT8 (p-KRT8) expression, was observed within subretinal and epiretinal membranes from PVR patients. Moreover, during TGF-β2–induced EMT process, we found that p-KRT8 was enhanced in RPE cells, which accompanied by an increase in autophagic flux. Inhibition of autophagy with pharmacological inhibitors or specific siRNAs was associated with a reduction in cell migration and the synthesis of several EMT markers. In the meantime, we demonstrated that p-KRT8 was correlated with the autophagy progression during the EMT of RPE cells. Knockdown the expression or mutagenesis of the critical phosphorylated site of KRT8 would induce autophagy impairment, through affecting the fusion of autophagosomes and lysosomes. Therefore, this study may provide a new insight into the pathogenesis of PVR and suggests the potential therapeutic value of p-KRT8 in the prevention and treatment of PVR.  相似文献   
73.
Cellular senescence represents the state of irreversible cell cycle arrest during cell division. Cellular senescence not only plays a role in diverse biological events such as embryogenesis, tissue regeneration and repair, ageing and tumour occurrence prevention, but it is also involved in many cardiovascular, renal and liver diseases through the senescence‐associated secretory phenotype (SASP). This review summarizes the molecular mechanisms underlying cellular senescence and its possible effects on a variety of renal diseases. We will also discuss the therapeutic approaches based on the regulation of senescent and SASP blockade, which is considered as a promising strategy for the management of renal diseases.  相似文献   
74.
We undertook this study to evaluate the expression of septin family members SEPT5, SEPT8, and SEPT11 in proliferative retinal membranes. Epiretinal membranes (ERM) were obtained from seven patients with proliferative vitreoretinopathy (PVR) and from four patients and four postmortem eyes with proliferative diabetic retinopathy (PDR). Subretinal membranes (SRM) were obtained from one patient and six postmortem eyes. Membranes were examined by immunohistochemical staining of paraffin sections using polyclonal antibodies against SEPT5, SEPT8, and SEPT11 and an ABC detection system. SEPT8 expression was detected in all ERM and SRM, with an exceptionally strong expression of 100% for ERM of PVR, 63% for PDR membranes, and 57% for SRM. SEPT11 was identified in 91% of all cases, with strong expression of 14%, 25%, and 14% in ERM of PVR, PDR, and SRM, respectively. SEPT5 was seen in 54% of all cases; strong immunostaining was found in only one case of PVR membranes. Our finding suggests a role for members of the septin family in the development of proliferative retinal membranes.  相似文献   
75.
76.
HepaRG is a proliferative human hepatoma-derived cell line that can be differentiated into hepatocyte-like and biliary-like cells. Differentiated HepaRG cultures maintain key hepatic functions including drug transporters and xenobiotic-metabolizing enzymes. To gain insight into proliferative and differentiated HepaRG metabolism we profiled various bioenergetic parameters and investigated cell culture levels of adenosine triphosphate (ATP), lactate, and lactate dehydrogenase (LDH) activity. Compared to differentiated-derived HepaRG, cells from proliferative cultures had increased basal and ATP-linked respiration and decreased maximal and spare respiratory capacities. Basal ATP levels but not lactate or LDH activity were increased in samples from proliferative-derived compared to differentiated-derived HepaRG. Further extracellular acidification rate (ECAR) experiments revealed parameters associated with glycolysis and oxidative phosphorylation. Under basal conditions, cells derived from both cultures had similar ECARs; however, under stressed conditions, proliferative-derived HepaRG had increases in ECAR capacity and apparent glycolytic reserve. The biguanide metformin has been reported to protect differentiated HepaRG against acetaminophen (APAP)-induced cell injury, as well as offer protection against bioenergetic deficiencies; therefore, we studied the outcome of exposure to these drugs in both culture conditions. Proliferative- and differentiated-derived cells were found to have distinct mitochondrial bioenergetic alterations when exposed to the hepatotoxic drug APAP. Metformin offered protection against loss of APAP-induced cellular viability and prevented APAP-induced decreases in bioenergetics in differentiated- but not proliferative-derived HepaRG. Distinguishingly, treatment with metformin alone reduced ATP-linked respiration, maximal respiratory capacity, and basal respiration in proliferative-derived HepaRG. Our results support that HepaRG represents an appropriate model to study drug-induced bioenergetic dysfunction.  相似文献   
77.
目的:分析慢性肾小球肾炎患者血清肝细胞生长因子(HGF)、胱抑素C(Cys-C)、凝血酶激活的纤溶抑制物(TAFI)水平的变化及其临床诊断价值。方法:选择我院2017年1月~2018年5月收治的71例慢性肾小球肾炎患者作为慢性肾小球肾炎组及同期于本院进行健康体检的83例作为健康对照组。检测进而比较两组血清HGF、Cys-C、TAFI水平,分析以上指标和患者肾功能的相关性及对慢性肾小球肾炎的诊断价值。结果:慢性肾小球肾炎组血清HGF、Cys-C、TAFI水平均显著高于对照组(P0.05)。慢性肾小球肾炎患者治疗后血清HGF、Cys-C、TAFI水平均显著低于治疗前(P0.05)。慢性肾小球肾炎患者血清HGF、Cys-C、TAFI水平和肾功能指标(肌酐(Scr)、尿素氮(BUN)、尿酸(UA))均呈显著正相关(P均0.05)。血清HGF水平诊断慢性肾小球肾炎的曲线下面积为0.826,敏感度和特异度分别为0.747和0.746;血清Cys-C水平诊断慢性肾小球肾炎的曲线下面积为0.821,敏感度和特异度分别为0.687和0.859;血清TAFI水平诊断慢性肾小球肾炎的曲线下面积为0.816,敏感度和特异度分别为0.855和0.647;血清HGF、Cys-C、TAFI水平联合检测诊断慢性肾小球肾炎的曲线下面积为0.951,敏感度和特异度分别为0.831和0.757。结论:慢性肾小球肾炎患者血清HGF、Cys-C及TAFI水平均明显升高,联合检测血清HGF、Cys-C及TAFI可能作为慢性肾小球肾炎诊断及预评估参考指标。  相似文献   
78.
Accumulating evidence has demonstrated that hydrogen sulfide (H2S) plays critical roles in the pathogenesis of chronic kidney diseases. This study was designed to investigate whether H2S has protective effects against diabetic nephropathy. Diabetic rats were induced by intraperitoneal injection of streptozotocin and administrated with H2S donor NaHS for 12 weeks. Rat glomerular mesangial cells were pretreated with NaHS or MAPK inhibitors (U0126, SP600125, and SB203580) prior to high glucose exposure, and cell proliferation was determined. Our findings suggest that H2S can improve renal function and attenuate glomerular basement membrane thickening, mesangial matrix deposition, and renal interstitial fibrosis in diabetic rats. H2S was found to reduce high glucose-induced oxidative stress by activating the Nrf2 antioxidant pathway and to exert anti-inflammatory effects by inhibiting NF-κB signaling. In addition, H2S reduced high glucose-induced mesangial cell proliferation by blockade of MAPK signaling pathways. Moreover, H2S was also found to inhibit the renin-angiotensin system in diabetic kidney. In conclusion, our study demonstrates that H2S alleviates the development of diabetic nephropathy by attenuating oxidative stress and inflammation, reducing mesangial cell proliferation, and inhibiting renin-angiotensin system activity.  相似文献   
79.
Chronic glomerulonephritis (CGN) is one of the most severe kidney diseases. Genes of vascular reactivity are thought to play an important role in development and progression of CGN. In this study, we analyzed association of genes of vascular homeostasis with hypertension and renal survival of CGN patients. The study sample included 238 patients with CGN and 304 healthy subjects of population control. Ten polymorphisms of ten genes of vascular homeostasis were genotyped through polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) analysis and TaqMan assays. Association of the genotypes with renal survival was analyzed by the Kaplan–Meier estimator. Genotypes 311SC and 311SS of the PON2 gene, (− 1166)AC and (− 1166)CC of the AGTR1 gene, (+ 46)AA of the ADRB2 gene, and 198KK and 198KN of the EDN1 gene were associated with decreased rate of renal survival of the patients. Polymorphisms S311C PON2, (− 1166)A/C AGTR1, (+ 46)G/A ADRB2, and K198N EDN1 were associated with the accelerated decline in kidney function in the CGN patients.  相似文献   
80.
Complement factor H (CFH) is an essential regulator of the complement system and plays very important roles in animal innate immunity. Although the complement system of amphioxus has been extensively studied, the expression in amphioxus and evolution of CFH gene remain unknown. In this study, we identified and characterized an amphioxus (Branchiostoma belcheri) CFH gene (designated as AmphiCFH). Our results showed that the full-length cDNA of AmphiCFH gene consists of 1295 bp nucleotides containing an 855 bp open reading frame (ORF) that was predicted to encode a 284 amino acid protein. The putative AmphiCFH protein possessed the characteristic of the CFH protein family, including typical CCP (complement control protein) domain. Real-time PCR analysis showed that the AmphiCFH was ubiquitously and differentially expressed in five investigated tissues (intestine, gills, notochord, muscles, and hepatic cecum). The expression level of the AmphiCFH gene was induced upon lipopolysaccharide stimulation, indicating that the AmphiCFH gene might be involved in innate immunity. In addition, phylogenetic analysis showed that the AmphiCFH gene was located between that of invertebrates and vertebrates, suggesting that the AmphiCFH gene is a member of the CFH gene family. In conclusion, our findings provided an insight into animal innate immunity and evolution of the CFH gene family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号