首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   17篇
  国内免费   6篇
  2022年   3篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   17篇
  2013年   12篇
  2012年   14篇
  2011年   10篇
  2010年   5篇
  2009年   9篇
  2008年   14篇
  2007年   13篇
  2006年   14篇
  2005年   9篇
  2004年   6篇
  2003年   14篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1980年   1篇
  1976年   1篇
排序方式: 共有231条查询结果,搜索用时 137 毫秒
21.
22.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels have been electrophysiologically identified in human and mouse mesangial cells, but the functional role of VSOR Cl- channels in mesangial cell apoptosis is not clear. The aim of the present study was to demonstrate the role of VSOR Cl- channels in oxidative stress-induced mesangial cell apoptosis. H2O2-induced Cl- currents showed phenotypic properties of VSOR Cl- channels, including outward rectification, voltage-dependent inactivation at more positive potentials, sensitivity to hyperosmolarity, and inhibition by VSOR Cl- channel blockers. Moreover, blockage of VSOR Cl- channels by DIDS (100 microM), NPPB (10 microM) or niflumic acid (10 microM) rescued mesangial cell apoptosis induced by H2O2. Treatment with 150 microM H2O2 for 2h resulted in significant reduction of cell volume, in contrast, nuclear condensation and/or fragmentation were not observed and the caspase-3 activity was also not increased. The early-phase alterations in cell volume were markedly abolished by pretreatment with VSOR Cl- channel blockers. We conclude that VSOR Cl- channels are involved in H2O2-induced apoptosis in cultured mesangial cells and its mechanism is associated with apoptotic volume decrease processes.  相似文献   
23.
Autophagy is a highly conserved cellular process regulating turnover of cytoplasmic proteins via a lysosome-dependent pathway. Here we show that kidneys from mice deficient in autophagic protein Beclin 1 exhibited profibrotic phenotype, with increased collagen deposition. Reduced Beclin 1 expression, through genetic disruption of beclin 1 or knockdown by specific siRNA in primary mouse mesangial cells (MMC), resulted in increased protein levels of type I collagen (Col-I). Inhibition of autolysosomal protein degradation by bafilomycin A(1) also increased Col-I protein levels and colocalization of Col-I with LC3, an autophagy marker, or LAMP-1, a lysosome marker, whereas treatment with TFP, an inducer of autophagy, resulted in decreased Col-I protein levels induced by TGF-β1, without alterations in Col-I α1 mRNA. Heterozygous deletion of beclin 1 increased accumulation of aggregated Col-I under nonstimulated conditions, and stimulation with TGF-β1 further increased aggregated Col-I. These data indicate that Col-I and aggregated, insoluble procollagen I undergo intracellular degradation via autophagy. A cytoprotective role of autophagy is implicated in kidney injury, and we demonstrate that low-dose carbon monoxide, shown to exert cytoprotection against renal fibrosis, induces autophagy to suppress accumulation of Col-I induced by TGF-β1. We also show that TGF-β1 induces autophagy in MMC via TAK1-MKK3-p38 signaling pathway. The dual functions of TGF-β1, as both an inducer of Col-I synthesis and an inducer of autophagy and Col-I degradation, underscore the multifunctional nature of TGF-β1. Our findings suggest a novel role of autophagy as a cytoprotective mechanism to negatively regulate and prevent excess collagen accumulation in the kidney.  相似文献   
24.

Background

Mutations in the NPHS1 and NPHS2 genes are among the main causes of early-onset and familial steroid resistant nephrotic syndrome respectively. This study was carried out to assess the frequencies of mutations in these two genes in a cohort of Pakistani pediatric NS patients.

Methods

Mutation analysis was carried out by direct sequencing of the NPHS1 and NPHS2 genes in 145 nephrotic syndrome (NS) patients. This cohort included 36 samples of congenital or infantile onset NS cases and 39 samples of familial cases obtained from 30 families.

Results

A total of 7 homozygous (6 novel) mutations were found in the NPHS1 gene and 4 homozygous mutations in the NPHS2 gene. All mutations in the NPHS1 gene were found in the early onset cases. Of these, one patient has a family history of NS. Homozygous p.R229Q mutation in the NPHS2 gene was found in two children with childhood-onset NS.

Conclusions

Our results show a low prevalence of disease causing mutations in the NPHS1 (22% early onset, 5.5% overall) and NPHS2 (3.3% early onset and 3.4% overall) genes in the Pakistani NS children as compared to the European populations. In contrast to the high frequency of the NPHS2 gene mutations reported for familial SRNS in Europe, no mutation was found in the familial Pakistani cases. To our knowledge, this is the first comprehensive screening of the NPHS1 and NPHS2 gene mutations in sporadic and familial NS cases from South Asia.  相似文献   
25.
The apoptosis of glomerular mesangial cells (GMC) in rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis, is accompanied by sublytic C5b-9 deposition, but the mechanism of sublytic C5b-9-mediated GMC apoptosis has not been elucidated. In the present study, the gene expression profiles both in the GMC stimulated by sublytic C5b-9 and the rat renal tissue of Thy-1N were detected using microarrays. Among the co-up-regulated genes, the up-regulation of interferon regulatory factor-1 (IRF-1) was further confirmed. Increased caspase 8 and caspase 3 expression and caspase 8 promoter activity in the GMC were also identified. Meanwhile, overexpression or knockdown of IRF-1 not only enhanced or inhibited GMC apoptosis and caspase 8 and 3 induction but also increased or decreased caspase 8 promoter activity, respectively. The element of IRF-1 binding to the caspase 8 promoter was first revealed. Furthermore, silencing IRF-1 or repressing the activation of caspases 8 and 3 significantly reduced GMC apoptosis, including other pathologic changes of Thy-1N. These novel findings indicate that GMC apoptosis of Thy-1N is associated with the IRF-1-activated caspase 8 pathway.  相似文献   
26.
Glomerular diseases are leading causes of end-stage renal diseases worldwide. They are considered to be consequences of injury primarily to the three types of glomerular cells. Differential diagnosis typically relies on invasive biopsy findings. We expected that injuries of different glomerular cells would cause different changes in urinary proteome. The goal of this study was to identify differential urinary proteins distinguishing between injuries of different glomerular cells before significant histopathologic changes. Adriamycin nephropathy and Thy1.1 glomerulonephritis were employed as models with different primary impaired cells. ConA-enriched urinary glycoproteome on day3 were profiled by gel-free shotgun tandem mass spectrometry, and compared with self-healthy controls to identify differential urinary proteins for each model. By comparing the changes of the differential proteins between these two models, we identified 39 proteins with different directions of changes, which may potentially be useful in differentiation; and 7 proteins with the same direction of changes, which may be potential indicators of early renal damage. These differential proteins were of several origins: plasma proteins, proteins with urine or kidney specificity, proteins without tissue-specificity (mainly inflammatory mediators) etc. Our results may help better understand the effects of injuries of different glomerular cells at the initial stage, and lead to the discovery of novel early diagnostic markers for human focal segmental glomerulosclerosis (FSGS) and mesangioproliferative glomerulonephritis (MsPGN) which have the same primary impaired cells with adriamycin nephropathy and Thy1.1 glomerulonephritis, respectively.  相似文献   
27.
28.
Hydroxyurea, when injected intraperitoneally, exerted marked inhibition on the activity of thymidine kinase in 5 day old postnatal cerebellum and 15 day old embryonic cerebrum. However, it failed to show any sustained inhibition on thymidine kinase activity in 5 day old postnatal cerebrum. In this case, the marginal decrease of thymidine kinase activity noticed during early intervals reversed back to more than normal value at a later time interval. These results along with our earlier findings are taken to indicate the differential action of this drug on thymidine kinase activity in rapidly and slowly proliferating regions of rat brain  相似文献   
29.
This study was aim to investigate whether the progression of proliferative vitreoretinopathy (PVR) depended on the activation of Yes-associated protein (YAP) and the subsequent epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cell. The effect of YAP activation on retinal fibrosis in a PVR mouse model and in human ARPE-19 cells in vitro was studied. After treated with transforming growth factor-β2(TGF-β2), the expressions of fibrogenic molecules, YAP activation and the TGF-β2-Smad signalling pathway in ARPE-19 cells were detected by Western blot and immunocytochemical analyses. The effect of YAP on change in fibrosis and EMT was tested by knockdown experiment using verteporfin (YAP inhibitor). YAP was upregulated in the PVR mouse model and during TGF-β2–induced RPE cell EMT. In an in vivo study, verteporfin attenuated PVR progression in a mouse model. Additionally, YAP knockdown retained phenotype of RPE cells and ameliorated TGF-β2–induced migration, gel contraction and EMT in vitro. YAP knockdown inhibited the TGF-β2–induced upregulation of connective tissue growth factor (CTGF), smooth muscle actin (SMA-α) and fibronectin. YAP was essential for the TGF-β2–induced nuclear translocation and phosphorylation of Smad2/3. Our work provides direct evidence that YAP is an essential regulator of EMT and profibrotic responses in PVR and indicates that YAP inhibition could be a potential target in PVR therapeutic intervention.  相似文献   
30.
The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号