首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   125篇
  国内免费   16篇
  2024年   4篇
  2023年   29篇
  2022年   22篇
  2021年   43篇
  2020年   64篇
  2019年   100篇
  2018年   59篇
  2017年   58篇
  2016年   42篇
  2015年   31篇
  2014年   66篇
  2013年   78篇
  2012年   14篇
  2011年   37篇
  2010年   13篇
  2009年   19篇
  2008年   20篇
  2007年   12篇
  2006年   8篇
  2005年   16篇
  2004年   13篇
  2003年   7篇
  2002年   8篇
  2001年   7篇
  2000年   8篇
  1999年   2篇
  1998年   10篇
  1997年   4篇
  1996年   9篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有839条查询结果,搜索用时 171 毫秒
831.
Osteoarthritis (OA) is one of the most common joint diseases worldwide. Unfortunately, clinical methods lack the ability to detect OA in the early stages. Timely detection of the knee joint degradation at the level of tissue changes can prevent its progressive damage. Here, diffuse reflectance spectroscopy (DRS) in the NIR range was used to obtain optical markers of the cartilage damage grades and to assess its mechanical properties. It was observed that the water content obtained by DRS strongly correlates with the cartilage thickness (R = .82) and viscoelastic relaxation time (R = .7). Moreover, the spectral parameters, including water content (OH-band), protein content (CH-band), and scattering parameters allowed for discrimination between the cartilage damage grades (10−4 < P ≤ 10−3). The developed approach may become a valuable addition to arthroscopy, helping to identify lesions at the microscopic level in the early stages of OA and complement the surgical analysis.  相似文献   
832.
833.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   
834.
835.
Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be checked together with the alignment. Finite element models of patients' lower extremities were developed to analyse the medial and lateral contact force distribution on the tibial insert. The distributions for four out of five patients were not balanced equally, even though the alignment angles were within a clinically acceptable range. Moreover, the distribution was improved by changing soft tissue release and ligament tightening for the specific case. Integration of the biomechanical modelling, image matching and finite element analysis techniques with the patient-specific properties and various dynamic loading would suggest a clinically relevant pre-operative planning for soft tissue balancing.  相似文献   
836.
Persistent changes in joint biomechanics resulting from knee injury are thought to contribute to progressive cartilage damage and post-traumatic osteoarthritis (PTOA). The identification and quantification of in vivo tibiofemoral surface interactions are critical to understanding them, particularly abnormal interactions that are damaging to articular cartilage and other structures of the knee. In this study, we describe an approach for understanding such potential interactions by using a weighted centroid derived from in vivo stifle kinematics in sheep. Collectively, repeatability and sensitivity analyses indicate that the magnitude of the changes in tibiofemoral centroid location resulting from combined ligament transection is greater than the repeatability and precision of the current weighted centroid approach, making this method useful for describing the changes in dynamic surface interactions that may be relevant in the pathogenesis of PTOA in this stifle injury model.  相似文献   
837.
838.
839.
ObjectivesCircular RNAs (circRNAs) are noncoding RNAs that compete against other endogenous RNA species, such as microRNAs, and have been implicated in many diseases. In this study, we investigated the role of a new circRNA (circSLC7A2) in osteoarthritis (OA).Materials and MethodsThe relative expression of circSLC7A2 was significantly lower in OA tissues than it was in matched controls, as shown by real‐time quantitative polymerase chain reaction (RT‐qPCR). Western blotting, RT‐qPCR and immunofluorescence experiments were employed to evaluate the roles of circSLC7A2, miR‐4498 and TIMP3. The in vivo role and mechanism of circSLC7A2 were also conformed in a mouse model.ResultscircSLC7A2 was decreased in OA model and the circularization of circSLC7A2 was regulated by FUS. Loss of circSLC7A2 reduced the sponge of miR‐4498 and further inhibited the expression of TIMP3, subsequently leading to an inflammatory response. We further determined that miR‐4498 inhibitor reversed circSLC7A2‐knockdown‐induced OA phenotypes. Intra‐articular injection of circSLC7A2 alleviated in vivo OA progression in a mouse model of anterior cruciate ligament transection (ACLT).ConclusionsThe circSLC7A2/miR‐4498/TIMP3 axis of chondrocytes catabolism and anabolism plays a critical role in OA development. Our results suggest that circSLC7A2 may serve as a new therapeutic target for osteoarthritis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号