首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   33篇
  国内免费   14篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   10篇
  2020年   12篇
  2019年   27篇
  2018年   18篇
  2017年   15篇
  2016年   13篇
  2015年   19篇
  2014年   28篇
  2013年   24篇
  2012年   14篇
  2011年   17篇
  2010年   14篇
  2009年   16篇
  2008年   9篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
  1993年   1篇
  1985年   1篇
排序方式: 共有265条查询结果,搜索用时 31 毫秒
101.
102.
Decidualization of endometrium, which is characterized by endometrial stromal cell (ESC) decidualization, vascular reconstruction, immune cell recruitment, and plentiful molecule production, is a crucial step for uterus to become receptive for embryo. When implantation takes place, ESCs surround and directly interact with embryo. Decidualized stromal cells (DSCs) are of great importance in endometrial decidualization, having a broad function in regulating immune activity and vascular remodeling of uterus. DSCs are shown to have a higher metabolic level and looser cytoskeleton than ESCs. What's the origin of ESCs and how ESCs successfully transform into DSCs had puzzled scientists in the last decades. Breakthrough had been achieved recently, and many studies had elucidated some of the characters and functions of DSCs. However, several questions still remain unclear. This paper reviews current understanding of where ESCs come from and how ESCs differentiate into DSCs, summarizes some characters and functions of DSCs, analyzes current studies and their limitations and points out research areas that need further investigation.  相似文献   
103.
104.
Li H 《Tissue & cell》2012,44(2):132-136
Imipramine (IM) has been widely used in clinics for the treatment of some mental diseases. The understanding of its role in other tissues or organs will be beneficial for its better clinical use. Here, it is shown that IM suppresses the adipogenic differentiation of mouse mesenchymal stem cells (MSCs). The accumulation of intracellular, Oil red O-stained lipid droplets was inhibited by IM in a dose-dependent manner. RT-PCR and western blot analysis revealed that after IM loading, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) decreased, demonstrating that the suppression of IM on MSC adipogenesis is at least partially mediated by the PPARγ2 pathway. These findings suggest that, in appropriate doses, the conventional antidepressive (IM) may exert inhibitory effect on adipocyte formation.  相似文献   
105.
Tissue resident mesenchymal stem cells (MSCs) are known to participate in tissue regeneration that follows cell turnover, apoptosis, or necrosis. It has been long known that aging impedes an organism's repair/regeneration capabilities. In order to study the age associated changes, the molecular characteristics of adipose tissue derived MSCs (ASCs) from three age groups of healthy volunteers i.e., young, middle aged, and aged were investigated. The number and multilineage differentiation potential of ASCs declined with age. Aging reduces the proliferative capacity along with increases in cellular senescence. A significant increase in quiescence of G2 and S phase was observed in ASCs from aged donors. The expression of genes related to senescence such as CHEK1 and cyclin-dependent kinase inhibitor p16ink4a was increased with age, however genes of apoptosis were downregulated. Further, an age-dependent abnormality in the expression of DNA break repair genes was observed. Global microRNA analysis revealed an abnormal expression of mir-27b, mir-106a, mir-199a, and let-7. In ubiquitously distributed adipose tissue (and ASCs), aging brings about important alterations, which might be critical for tissue regeneration and homeostasis. Our findings therefore provide a better understanding of the mechanism(s) involved in stem cell aging and regenerative potential, and this in turn may affect tissue repair that declines with aging.  相似文献   
106.
Congenital human cytomegalovirus (HCMV) infection is a leading infectious cause of birth defects. Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Multipotent mesenchymal stromal cells (MSCs) are a group of stem/progenitor cells that are multi-potent and can self-renew, and they play a vital role in multi-organ formation. Whether MSCs are susceptible to HCMV infection is unclear. In this study, MSCs were isolated from Wharton’s jelly of the human umbilical cord and identified by their plastic adherence, surface marker pattern, and differentiation capacity. Then, the MSCs were infected with the HCMV Towne strain, and infection status was assessed via determination of viral entry, replication initiation, viral protein expression, and infectious virion release using western blotting, immunofluorescence assays, and plaque forming assays. The results indicate that the isolated MSCs were fully permissive for HCMV infection and provide a preliminary basis for understanding the pathogenesis of HCMV infection in non-nervous system diseases, including multi-organ malformation during fetal development.
  相似文献   
107.
目的克隆人软骨组织生长分化因子5(GDF5)基因及构建GDF5基因真核表达载体,观察其在恒河猴骨髓间充质干细胞(MSCs)中的表达情况。方法采用反转录聚合酶链式反应(RT-PCR)从人胎儿软骨组织克隆hGDF5基因全长cDNA,插入pEGFP-C2载体,构建重组真核表达质粒pEGFP-C2-GDF5。重组质粒脂质体介导法转染MSCs细胞,荧光显微镜观察报告基因的表达,RT-PCR法检测目的基因表达。结果成功克隆人软骨组织GDF5基因和构建GDF5真核表达质粒pEGFP-C2-GDF5,克隆在载体上的基因长度为1505bp,包含全部cDNA编码序列1505bp,测序显示与Genbank上的序列一致。重组质粒转染恒河猴MSCs细胞得到表达,绿色荧光蛋白在转染24h后开始表达,72h达高峰,然后表达逐渐减弱。转染后72h可检测到GDF5mRNA表达。结论人GDF5基因在恒河猴MSCs细胞的成功表达为应用恒河猴模型开展基于细胞的基因疗法修复骨和软骨损伤研究奠定了必要基础。  相似文献   
108.
Sheng H  Wang Y  Jin Y  Zhang Q  Zhang Y  Wang L  Shen B  Yin S  Liu W  Cui L  Li N 《Cell research》2008,18(8):846-857
Bone-marrow-derived mesenchymal stem cells (MSCs) have been shown to possess immunosuppressive properties, e.g., by inhibiting T cell proliferation. Activated T cells can also enhance the immunosuppression ability of MSCs. The precise mechanisms underlying MSC-mediated immunosuppression remain largely undefined, although both cell-cell contact and soluble factors have been implicated; nor is it clear how the immunosuppressive property of MSCs is modulated by T cells. Using MSCs isolated from mouse bone marrow, we show here that interferon gamma (IFNγ), a well-known proinflammatory cytokine produced by activated T cells, plays an important role in priming the immunosuppressive property of MSCs. Mechanistically, IFNγ acts directly on MSCs and leads to up-regulation of B7-H1, an inhibitory surface molecule in these stem cells. MSCs primed by activated T cells derived from IFNγ-/- mouse exhibited dramatically reduced ability to suppress T cell proliferation, a defect that can be rescued by supplying exogenous IFNγ. Moreover, siRNA-mediated knockdown of B7-H1 in MSCs abolished immunosuppression by these cells. Taken together, our results suggest that IFNγ plays a critical role in triggering the immunosuppresion by MSCs through upregulating B7-H1 in these cells, and provide evidence supporting the cell-cell contact mechanism in MSC-mediated immunosuppression.  相似文献   
109.
Within the bone lie several different cell types, including osteoblasts (OBs) and mesenchymal stem cells (MSCs). The MSCs are ideal targets for regenerative medicine of bone due to their differentiation potential towards OBs. Human MSCs exhibit two distinct morphologies: rapidly self-renewing cells (RS) and flat cells (FC) with very low proliferation rates. Another cell type found in pathological bone conditions is osteosarcoma. In this study, we compared the topographic and morphometric features of RS and FC cells, human OBs and MG63 osteosarcoma cells by atomic force microscopy (AFM). The results demonstrated clear differences: FC and hOB cells showed similar ruffled topography, whereas RS and MG63 cells exhibited smoother surfaces. Furthermore, we investigated how selected substrates influence cell morphometry. We found that RS and MG63 cells were flatter on fibrous substrates such as polystyrene and collagen I, but much more rounded on glass, the smoothest surface. In contrast, cells with large area, namely FC and hOB cells, did not exhibit pronounced changes in flatness with regards to the different substrates. They were, however, remarkably flatter in comparison to RS and MG63 cells. We could explain the differences in flatness by the extent of adhesion. Indeed, FC and hOB cells showed much higher content of focal adhesions. Finally, we used the AFM to determine the cellular Young's modulus. RS, FC and hOB cells showed comparable stiffness on the three different substrates, while MG63 cells demonstrated the unique feature of increased elasticity on collagen I. In summary, our results show, for the first time, a direct comparison between the morphometric and biophysical features of different human cell types derived from normal and pathological bone. Our study manifests the opinion that along with RNA, proteomic and functional research, morphological and biomechanical characterization of cells also reveals novel cell features and interrelationships.  相似文献   
110.
Cancer as a multistep and complicated disease is regulated by several molecular and cellular events. Cancer treatment could be managed at the early stages when the tumor is confined in the tissue. However, disseminated cancer cells metastasize to other body parts and generate new tumors resulting in mortality. Mesenchymal stem cells (MSCs) are found in different body parts and helps adult tissue regeneration. The role of MSCs in cancer progression has emerged as one of the important aspects in cancer biology and is the aim of interest in recent years. In the current study, effects of Dental Pulp Stem Cells (DPSCs) on PC-3 prostate cancer cell proliferation and migration were conducted by cell proliferation, apoptosis, gene expression and cell migration analysis in vitro. Condition medium (CM) obtained from DPSCs increased cell proliferation of PC-3 cells and decreased apoptosis. Either administration of CM or trans well co-culture of DPSCs increased cell migration in scratch assay, confirmed by gene expression analysis of migratory genes including fibronectin, laminin and collagen type I (Col I). Furthermore, DPSCs participated in a self-organized structure with PC-3 cells in co-culture conditions. Overall, results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号