首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6095篇
  免费   270篇
  国内免费   105篇
  2023年   73篇
  2022年   76篇
  2021年   148篇
  2020年   181篇
  2019年   328篇
  2018年   280篇
  2017年   238篇
  2016年   192篇
  2015年   151篇
  2014年   406篇
  2013年   613篇
  2012年   270篇
  2011年   448篇
  2010年   299篇
  2009年   213篇
  2008年   252篇
  2007年   287篇
  2006年   228篇
  2005年   232篇
  2004年   191篇
  2003年   153篇
  2002年   133篇
  2001年   88篇
  2000年   64篇
  1999年   78篇
  1998年   89篇
  1997年   69篇
  1996年   55篇
  1995年   72篇
  1994年   41篇
  1993年   52篇
  1992年   52篇
  1991年   29篇
  1990年   25篇
  1989年   32篇
  1988年   27篇
  1987年   23篇
  1986年   30篇
  1985年   29篇
  1984年   41篇
  1983年   18篇
  1982年   24篇
  1981年   28篇
  1980年   37篇
  1979年   14篇
  1978年   9篇
  1977年   7篇
  1976年   7篇
  1974年   7篇
  1973年   13篇
排序方式: 共有6470条查询结果,搜索用时 31 毫秒
91.
92.
ABSTRACT. Rhodamine 123, a membrane potential-specific dye, has been evaluated as a probe to monitor the function of the mitochondrion in long slender bloodstream and procyclic trypomastigotes of several Trypanosoma brucei spp. By epifluorescence microscopy, mitochondrial development has been followed in long slender bloodstream and procyclic organisms stained with rhodamine 123. to photograph stained long slender bloodstream forms, it was necessary to develop a method to completely immobilize viable organisms. In both parasite forms, as the cell cycle progressed, the mitochondrion developed from a thread-like structure to a highly branched organelle. A dramatic reorganization occurred preceding cytokinesis to produce two progeny thread-like structures which were partitioned into newly formed daughter cells. the organelle within the long slender trypomastigote was found to stain optimally at 0.3 μ/ml of rhodamine 123, while the procyclic form required 3.0 μ/ml. the results suggest that the plasma membrane potential is higher in the long slender parasite than in the procyclic form. the effects of inhibitors that disrupt mitochondrial function were examined in long slender and procyclic parasites, and some of these agents were shown to affect rhodamine 123 accumulation and retention. In long slender trypomastigotes the trypanosome alternative oxidase does not appear to be coupled to proton pumping, whereas in procyclic organisms the effects of inhibitors indicate that this oxidase may be coupled to a pathway that is branched preceding an antimycin A1-sensitive site.  相似文献   
93.
After the intracisternal injection of three protease inhibitors which prevent the degradation of methionine enkephalin (amastatin, Des-Pro2-bradykinin, and phosphoramidon) and a mixture of these protease inhibitors, we investigated the effect on convulsive seizures in the seizure-susceptible El mouse. We also measured the cerebral methionine enkephalin content by high-performance liquid chromatography coupled with radioimmunoassay. Protease inhibitors significantly decreased both the incidence of seizures and the seizure score in El mice in a dose-dependent manner. This anticonvulsant effect was reversed by naloxone (2 mg/kg, sc). The cerebral methionine enkephalin content increased significantly after the administration of protease inhibitors in comparison with saline injection. These findings suggest that it was not protease inhibitors but instead increase of endogenous methionine enkephalin that reduced the incidence of seizures and the seizure score in El mice. Together with our previous data, the present findings support our hypothesis that a deficit in anticonvulsant endogenous methionine enkephalin is involved in the pathogenesis of seizures in the El mouse.  相似文献   
94.
The role of protein phosphorylation in catecholamine secretion from bovine adrenomedullary chromaffin cells was studied using different protein kinase inhibitors. Naphthalenesulfonamide derivatives as ML9 and ML7, more specific for the myosin light chain kinase, and the calmodulin antagonist W7 inhibited catecholamine secretion 20 and 40% respectively in digitonin-permeabilized chromaffin cells. ML9 also decreased calcium evoked protein phosphorylation of different proteins including tyrosine hydroxylase in permeabilized cells. These naphthalenesulfonamide derivatives showed also an effect in intact cells, ML9 and W7 produced 50% inhibition in catecholamine secretion and45Ca2+ uptake, however H8 had no effect. The partial [3H]nitrendipine binding displacement of these drugs to adrenomedullary membranes suggests that these sulfonamide derivatives could interact directly with L-type calcium channels in intact cells. The results obtained in permeabilized cells suggest a possible role of protein phosphorylation in the regulation of catecholamine secretion in chromaffin cells.The abbreviations used are ML9 1-(5-Chloronaphthalene-1-sulfonyl)1H-hexahydro-1,4-diazepine hydrochloride - ML7 1-(5-Iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4 diazepine hydrochloride - H7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride - H8 N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride - W7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride - PKI protein kinase A inhibitor - HEPES N-(2-hydroxyethylpiperazine-N-(2 ethanesulfonic acid) - PIPES piperazine-N, N-bis (2-ethanesulfonic acid) - EGTA [ethylene-bis (oxyethylenenitrilo)] tetraacetic acid - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - DMEM Dulbecco's Modified Eagle's medium - MLC myosin light chain - MLCK myosin light chain kinase - TH tyrosine hydroxylase  相似文献   
95.
We examined whether inhibitors of the arachidonic acid cascade inhibited nitric oxide (NO) production, as measured by nitrite concentration, either in macrophages or by their cytosolic fractions. Nitrite production by peritoneal macrophages from mice receiving OK-432 treatment was significantly inhibited by phospholipase A2 inhibitors [dexamethasone and 4-bromophenacyl bromide (4-BPB)], lipoxygenase inhibitors [nordihydroguaiaretic acid (NDGA) and ketoconazole] and a glutathioneS-transferase (leukotrienes LTA4-LTC4) inhibitor (ethacrynic acid). However, caffeic acid and esculetin, inhibitors of 5- and 12-lipoxygenase respectively, were not inhibitory. On the other hand, indomethacin, a cyclooxygenase inhibitor, slightly inhibited whereas another inhibitor, ibuprofen, did not. Inhibition of the nitrite production by dexamethasone, 4-BPB, NDGA and ethacrynic acid was also demonstrated when the macrophages were restimulated ex vivo with OK-432 or with lipopolysaccharide. The inhibitory activity of dexamethasone, NDGA and ethacrynic acid was significantly reduced by ex vivo restimulation with OK-432, whereas that of 4-BPB was hardly affected. Furthermore, the inhibitory activity of dexamethasone, NDGA and ethacrynic acid was much higher when the macrophages were continuously exposed to the agents than when they were pulsed. Meanwhile, inhibition by 4-BPB was almost the same with either treatment. In addition, the inhibitory activity of these agents was not blocked withl-arginine, a substrate of NO synthases, or with arachidonate metabolites (LTB4, LTC4 and LTE4). Ethacrynic acid and 4-BPB, but not dexamethasone and NDGA, also inhibited nitrite production by the cytosolic fractions from OK-432-restimulated peritoneal macrophages, and the inhibitory activity of 4-BPB was superior to that of ethacrynic acid. These agents, however, did not inhibit nitrite production from sodium nitroprusside, a spontaneous NO-releasing compound. These results indicate that dexamethasone, 4-BPB, NDGA and ethacrynic acid inhibited the production of NO by macrophages through at least two different mechanisms: one was inhibited by dexamethasone, NDGA and ethacrynic acid and the other by 4-BPB. Furthermore, 4-BPB and ethacrynic acid directly inhibited the activity of the NO synthase in macrophages, suggesting that the agents work by binding to the active site(s) of the enzyme.  相似文献   
96.
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.  相似文献   
97.
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer–dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer–dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.  相似文献   
98.
A nonglycosylated (N30QN78Q) form of the human tissue inhibitor of metalloproteinases, TIMP-1, has been prepared and crystallized in a form suitable for X-ray diffraction analysis. Small single crystals have been grown using sodium tartrate as a precipitant. The crystals are in space group P21, with cell dimensions a = 35.28, b = 53.95, c = 48.56, and β = 96.0°. There is a single molecule of TIMP-1 in the asymmetric unit. The crystals diffract to at least 2.3 Å resolution. Complete data have been collected to 2.9 Å and a search for heavymetal derivatives is in progress. © 1993 Wiley-Liss, Inc.  相似文献   
99.
在大多数致病菌中都存在群体感应系统,而群体感应抑制剂就是以此系统作为靶点,在不影响细菌生长的情况下阻断细菌生物被膜形成或抑制毒力基因表达,不易导致耐药性的产生,是一种理想的抗菌增效剂。分子对接作为虚拟筛选技术之一,其目标具体、效率高、成本低,是药物研发的重要手段。本文重点介绍了分子对接的主要模块及其在研究群体感应抑制剂中的进展。  相似文献   
100.
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides ( 4 a – i , 7 a – g ) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI−H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a – i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a – g in all biological assays. Compounds 7 e – f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号