首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76467篇
  免费   18767篇
  国内免费   1457篇
  2024年   53篇
  2023年   590篇
  2022年   656篇
  2021年   1441篇
  2020年   3717篇
  2019年   5598篇
  2018年   5606篇
  2017年   5319篇
  2016年   5067篇
  2015年   5004篇
  2014年   5750篇
  2013年   6553篇
  2012年   5085篇
  2011年   5646篇
  2010年   5475篇
  2009年   3785篇
  2008年   3931篇
  2007年   3542篇
  2006年   3318篇
  2005年   3041篇
  2004年   2750篇
  2003年   2523篇
  2002年   2062篇
  2001年   1580篇
  2000年   998篇
  1999年   898篇
  1998年   567篇
  1997年   529篇
  1996年   531篇
  1995年   558篇
  1994年   520篇
  1993年   491篇
  1992年   453篇
  1991年   387篇
  1990年   309篇
  1989年   291篇
  1988年   280篇
  1987年   218篇
  1986年   225篇
  1985年   197篇
  1984年   214篇
  1983年   109篇
  1982年   175篇
  1981年   147篇
  1980年   131篇
  1979年   92篇
  1978年   71篇
  1977年   66篇
  1976年   58篇
  1972年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
1. Bergmann's rule states that organisms inhabiting colder environments show an increase in body size or mass in comparison to their conspecifics living in warmer climates. Although originally proposed for homoeothermic vertebrates, this rule was later extended to ectotherms. In social insects, only a few studies have tested this rule and the results were ambiguous. Here, ‘body size’ can be considered at two different levels (the size of the individual workers or the size of the colony). 2. In this study, data from 53 nests collected along altitudinal gradients in the Alps were used to test the hypotheses that the worker body size and colony size of the ant Leptothorax acervorum increase with increasing altitude and therefore follow Bergmann's rule. 3. The results show that the body size of workers but not the colony size increases with altitude. Whether this pattern is driven by starvation resistance or other mechanisms remains to be investigated.  相似文献   
72.
73.
Intra‐cohort cannibalism is an example of a size‐mediated priority effect. If early life stages cannibalize slightly smaller individuals, then parents face a trade‐off between breeding at the best time for larval growth or development and predation risk from offspring born earlier. This game‐theoretic situation among parents may drive adaptive reproductive phenology toward earlier breeding. However, it is not straightforward to quantify how cannibalism affects seasonal egg fitness or to distinguish emergent breeding phenology from alternative adaptive drivers. Here, we devise an age‐structured game‐theoretic mathematical model to find evolutionary stable breeding phenologies. We predict how size‐dependent cannibalism acting on eggs, larvae, or both changes emergent breeding phenology and find that breeding under inter‐cohort cannibalism occurs earlier than the optimal match to environmental conditions. We show that emergent breeding phenology patterns at the level of the population are sensitive to the ontogeny of cannibalism, that is, which life stage is subject to cannibalism. This suggests that the nature of cannibalism among early life stages is a potential driver of the diversity of reproductive phenologies seen across taxa and may be a contributing factor in situations where breeding occurs earlier than expected from environmental conditions.  相似文献   
74.
  1. Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.
  2. We explored community‐level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed‐grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [?20%, ?40%, ?60%, ?80%, and ?100%], water addition [+50%], and control [0% change in precipitation]) year‐round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.
  3. We found that community‐level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.
  4. Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community‐level responses (richness and evenness) at both extreme drought and added precipitation treatments.
  5. Synthesis: Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community‐level responses to a gradient in precipitation, suggesting that management could buffer community‐level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.
  相似文献   
75.
We propose a technique for separating the climatic signal which is contained in two tree-ring parameters widely used in dendroclimatology. The method is based on the removal of the relationship between tree-ring width (TRW) and maximum latewood density (MXD) observed for narrow tree rings from high latitudes. The new technique is tested on data from three larch stands located along the northern timberline in Eurasia. Correlations were calculated between the temperatures of pentads (five consecutive days), TRW chronologies and MXD chronologies calculated according to the standard and proposed methods. The analysis confirms the great importance of summer temperature for tree radial growth and tree-ring formation. TRW is positively correlated with the temperature of four to eight pentads (depending on the region) at the beginning of the growth season, but MXD as obtained by the standard technique is correlated with temperature over a much longer period. For maximum density series from which the relationship between MXD and TRW has been removed (MXD′), there is a clear correlation with temperatures in the second part of the growing season. These results are consistent with the known dynamics of tree-ring growth in high latitudes and mechanisms of tree-ring formation.  相似文献   
76.
77.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   
78.
79.
80.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号