首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   2篇
  国内免费   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   12篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1990年   1篇
  1981年   1篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
101.
微生物发酵生产番茄红素的研究进展   总被引:8,自引:0,他引:8  
番茄红素是一种功能性天然色素,具有抗氧化、防病抗癌、增强机体免疫力等生理功能。简要介绍了其理化性质、生物合成,并综述了微生物发酵生产法的研究进展。  相似文献   
102.
Obesity is a condition of chronic tissue inflammation and oxidative stress that poses as a risk factor for male infertility. Moringa oleifera oil extract is known to have cholesterol-lowering properties and a potential to treat obesity, while lycopene is a potent antioxidant. We hypothesize that Moringa or lycopene may improve male fertility markers in an animal model of diet-induced obesity. Male Albino rats (n = 60) were randomized to receive regular chow (RC) or high-fat diet (HFD) for 12 weeks (n = 30 each). Animals in each arm were further randomized to receive gavage treatment with corn oil (vehicle), lycopene (10 mg/kg), or Moringa (400 mg/kg) for four weeks starting on week 9 (n = 10 each). Animals were sacrificed at 12 weeks, and blood was collected to assess lipid profile, serum testosterone, and gonadotropin levels. The testes and epididymides were removed for sperm analysis, oxidative stress and inflammatory markers, and histopathological assessment. In comparison to their RC littermates, animals on HFD showed an increase in body weights, serum lipids, testosterone and gonadotrophin levels, testicular oxidative stress and inflammatory markers, as well as sperm abnormalities and disrupted testicular histology. Moringa or lycopene reduced body weight, improved oxidative stress, and male fertility markers in HFD-fed animals with lycopene exhibiting better anti-antioxidant and anti-lipidemic effects. Lycopene is superior to Moringa in improving male fertility parameters, possibly by attenuating oxidative stress.  相似文献   
103.
The abundant supply of biosynthetic precursors and product compatibility with the intracellular environment play important roles for microbial isoprenoid production. In this study, we tailor to both of these requirements by introducing the two-step isopentenol utilization pathway (IUP) to augment the native pathway in the oleaginous yeast Yarrowia lipolytica. With shortcut access to the common isoprenoid precursor, isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), IUP is capable of elevating IPP + DMAPP levels by 15.7-fold compared to the mevalonate pathway alone. The increase in IPP + DMAPP levels can directly lead to better isoprenoid synthesis, which is illustrated using lycopene as a model compound. Moreover, we also demonstrate that higher lipid contents in the cells correlate with improved intracellular lycopene production, suggesting the importance of having a substantial hydrophobic environment to sequester isoprenoids. Combining these strategies with further genetic and fermentation optimizations, we achieved a final lycopene titer of 4.2 g/L. Overall, these strategies hold great potential for strengthening the synthesis of long-chain isoprenoids and fat-soluble natural products in microbes.  相似文献   
104.
Klaus Humbeck 《Planta》1990,182(2):204-210
Mutant C-6D of the unicellular green alga Scenedesmus obliquus has lost the ability to form cyclic carotenoids during heterotrophic growth in the dark. In the dark it accumulates acyclic intermediates, i.e. lycopene, neurosporene and ζ-carotene. The lycopene and two neurosporene forms were identified to be cis-isomers. Upon transfer to light, intermediates decrease and a normal set of carotenoids is synthesized. Inhibition of the cyclization reaction by nicotine reveals a lightinduced isomerization of cis-lycopene to trans-lycopene. Since the spectral characteristics of these two isomers differ drastically the isomerization can be followed in vivo by measuring a light-induced absorbance change. This absorbance change has its maximum at 520 nm and shows fast kinetics under high light intensities reaching a saturation level after about 2 min. Fluence-response curves for this absorbance change were performed for different wavelengths of actinic light. From the linear parts of these curves an action spectrum was caculated showing maxima at 670, 630 and 440 nm originating from chlorophyll and a maximum at shorter wavelengths (400–510 nm) which is interpreted to derive from ζ-carotene. A model for the light regulation of carotenogenesis in mutant C-6D is presented and the relation to the so-called 520-change observed in many plants is discussed.  相似文献   
105.
The present study was designed to evaluate the radioprotective effect of lycopene, a naturally occurring dietary carotenoid, on γ-radiation induced toxicity in cultured rat hepatocytes. The cellular changes were estimated using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), ceruloplasmin, vitamins A, E, C and uric acid. The DNA damage was analysed by single cell gel electrophoresis (comet assay). The increase in the severity of DNA damage was observed with the increase in γ-radiation dose (1, 2 and 4 Gy) in cultured rat hepatocytes. TBARS were increased significantly whereas the levels of GSH, vitamins C, E and A, ceruloplasmin, uric acid and antioxidant enzymes were significantly decreased in γ-irradiated groups. The maximum damage to hepatocytes was observed at 4 Gy irradiation. Pretreatment with lycopene (1.86, 9.31 and 18.62 μM) showed a significant decrease in the levels of TBARS and DNA damage. The antioxidant enzymes increased significantly along with the levels of GSH, vitamins A, E, C, uric acid and ceruloplasmin. The maximum protection of hepatocytes was observed at 9.31 μM of lycopene pretreatment. Thus, our results show that pretreatment with lycopene offers protection against γ-radiation induced cellular damage and can be developed as an effective radioprotector during radiotherapy.  相似文献   
106.
In metabolic engineering, enhanced production of value-added chemicals requires precise flux control between growth-essential competing and production pathways. Although advances in synthetic biology have facilitated the exploitation of a number of genetic elements for precise flux control, their use requires expensive inducers, or more importantly, needs complex and time-consuming processes to design and optimize appropriate regulator components, case-by-case. To overcome this issue, we devised the plug-in repressor libraries for target-specific flux control, in which expression levels of the repressors were diversified using degenerate 5′ untranslated region (5’ UTR) sequences employing the UTR Library Designer. After we validated a wide expression range of the repressor libraries, they were applied to improve the production of lycopene from glucose and 3-hydroxypropionic acid (3-HP) from acetate in Escherichia coli via precise flux rebalancing to enlarge precursor pools. Consequently, we successfully achieved optimal carbon fluxes around the precursor nodes for efficient production. The most optimized strains were observed to produce 2.59 g/L of 3-HP and 11.66 mg/L of lycopene, which were improved 16.5-fold and 2.82-fold, respectively, compared to those produced by the parental strains. These results indicate that carbon flux rebalancing using the plug-in library is a powerful strategy for efficient production of value-added chemicals in E. coli.  相似文献   
107.
《Fungal Biology Reviews》2018,32(3):166-180
Diseases caused by rust fungi represent critical constraints to global plant production. A characteristic feature of rust pathogens is the striking pigments they produce in one or more spore forms, which give them a rusty appearance. Here, we review the literature published to date on the extraction, separation, quantification and characterisation of carotenoid pigments in rust fungi. These pigments are thought to protect rust fungi against UV radiation and oxidative stress, and possibly act as virulence factors. The yellow-orange colour of some rust species is due to carotenoid pigments. Four carotenoids have been found in rust fungi: phytoene, lycopene, γ-carotene and β-carotene, but their relative contributions to biological functions are largely unknown. Different pre-processes and storage of spore materials, as well as different extraction processes, have been applied in a wide range of investigations on rust spore pigments. We find that the value of the current literature on rust carotenoids for taxonomic diagnostics in understanding the evolution of pigment biosynthesis and in assessing their role in pathogenesis is limited. Re-investigation of rust carotenoid composition using modern analytical technologies is therefore critical to further these fields of research. Our review includes detailed guidance on choice of techniques for rust carotenoid experimental analyses.  相似文献   
108.
Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5′-untranslated regions (5′-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.  相似文献   
109.
Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bodies in Escherichia coli. A biodegradable and biocompatible polyester – poly (3-hydroxybutyrate) (PHB) – was selected as the intracellular storage vessel to encapsulate lycopene, which is a chromogenic model compound. The hydrophobic interaction between lycopene and PHB was verified by using in vitro binding test and sucrose density gradient centrifugation. Further in vivo characterization was performed by using Confocal Laser Scanning Microscopy (CLSM). The images validated the in vivo co-localization between PHB granules and lycopene. The images also showed that lycopene aggregated in bacteria that did not produce PHB, which may challenge the commonly accepted hypothesis that most lycopene molecules are stored in cell membranes of recombinant host. We also confirmed that producing PHB did not negatively affect lycopene biosynthesis in the E. coli strains and collected data suggesting that PHB titer and lycopene titer were positively correlated when the cells were engineered to co-produce them. The biopolymers that encapsulated hydrophobic molecules could have many useful applications, especially in controlled release because the polymers are biodegradable, and the encapsulated products would be released during the polymer degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号