首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4222篇
  免费   496篇
  国内免费   61篇
  2024年   11篇
  2023年   87篇
  2022年   112篇
  2021年   245篇
  2020年   233篇
  2019年   225篇
  2018年   223篇
  2017年   140篇
  2016年   129篇
  2015年   205篇
  2014年   307篇
  2013年   280篇
  2012年   237篇
  2011年   274篇
  2010年   192篇
  2009年   157篇
  2008年   177篇
  2007年   206篇
  2006年   185篇
  2005年   125篇
  2004年   127篇
  2003年   114篇
  2002年   106篇
  2001年   67篇
  2000年   37篇
  1999年   32篇
  1998年   34篇
  1997年   47篇
  1996年   23篇
  1995年   35篇
  1994年   42篇
  1993年   33篇
  1992年   30篇
  1991年   22篇
  1990年   29篇
  1989年   17篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1985年   19篇
  1984年   43篇
  1983年   28篇
  1982年   22篇
  1981年   12篇
  1980年   11篇
  1979年   19篇
  1978年   11篇
  1977年   8篇
  1974年   8篇
  1971年   6篇
排序方式: 共有4779条查询结果,搜索用时 187 毫秒
951.
Administration of an efficient alginate lyase (AlgL) or AlgL mutant may be a promising therapeutic strategy for treatment of cystic fibrosis patients with Pseudomonas aeruginosa infections. Nevertheless, the catalytic activity of wild‐type AlgL is not sufficiently high. It is highly desired to design and discover an AlgL mutant with significantly improved catalytic efficiency against alginate substrates. For the purpose of identifying an AlgL mutant with significantly improved catalytic activity, in this study, we first constructed and validated a structural model of AlgL interacting with substrate, providing a better understanding of the interactions between AlgL and its substrate. Based on the modeling insights, further enzyme redesign and experimental testing led to discovery of AlgL mutants, including the K197D/K321A mutant, with significantly improved catalytic activities against alginate and acetylated alginate in ciprofloxacin‐resistant P. aeruginosa (CRPA) biofilms. Further anti‐biofilm activity assays have confirmed that the K197D/K321A mutant with piperacillin/tazobactam is indeed effective in degrading the CRPA biofilms. Co‐administration of the potent mutant AlgL and an antibiotic (such as a nebulizer) could be effective for therapeutic treatment of CRPA‐infected patients with cystic fibrosis. Proteins 2016; 84:1875–1887. © 2016 Wiley Periodicals, Inc.  相似文献   
952.
While primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, it still does not have a clear mechanism that can explain all clinical cases of the disease. Elevated IOP is associated with increased accumulation of extracellular matrix (ECM) proteins in the trabecular meshwork (TM) that prevents normal outflow of aqueous humor (AH) and has damaging effects on the fine mesh-like lamina cribrosa (LC) through which the optic nerve fibers pass. Applying a pathway analysis algorithm, we discovered that an elevated level of TGFβ observed in glaucoma-affected tissues could lead to pro-fibrotic pathway activation in TM and in LC. In turn, activated pro-fibrotic pathways lead to ECM remodeling in TM and LC, making TM less efficient in AH drainage and making LC more susceptible to damage from elevated IOP via ECM transformation in LC. We propose pathway targets for potential therapeutic interventions to delay or avoid fibrosis initiation in TM and LC tissues.  相似文献   
953.
Autophagy is a cellular process that executes the turnover of dysfunctional organelles and misfolded or abnormally aggregated proteins. Microtubule‐associated protein MAP1S interacts with autophagy marker LC3 and positively regulates autophagy flux. LC3 binds with fibronectinmRNA and facilitates its translation. The synthesized fibronectin protein is exported to cell surface to initiate the assembly of fibronectin extracellular matrix. Fibronectin is degraded in lysosomes after it is engulfed into cytosol via endocytosis. Here, we show that defects in MAP1S‐mediated autophagy trigger oxidative stress, sinusoidal dilation, and lifespan reduction. Overexpression of LC3 in wild‐type mice increases the levels of fibronectin and γ‐H2AX, a marker of DNA double‐strand breakage. LC3‐induced fibronectin is efficiently degraded in lysosomes to maintain a balance of fibronectin levels in wild‐type mice so that the mice live a normal term of lifespan. In the LC3 transgenic mice with MAP1S deleted, LC3 enhances the synthesis of fibronectin but the MAP1S depletion causes an impairment of the lysosomal degradation of fibronectin. The accumulation of fibronectin protein promotes liver fibrosis, induces an accumulation of cell population at the G0/G1 stage, and further intensifies oxidative stress and sinusoidal dilatation. The LC3‐induced overexpression of fibronectin imposes stresses on MAP1S‐deficient mice and dramatically reduces their lifespans. Therefore, MAP1S‐mediated autophagy plays an important role in maintaining mouse lifespan especially in the presence of extra amount of fibronectin.  相似文献   
954.
Renal fibrosis is a common irreversible process of chronic kidney disease (CKD) characterized by uncontrolled deposits of extracellular matrix, replacement of cellular parenchyma and progressive loss of renal function. Recent evidence suggests that a series of phenotypic transformations of resident renal cells are responsible for the formation of interstitial myofibroblasts, cells that play a key role in the fibrotic process. In the renal glomerulus transformation of mesangial cells to myofibroblasts is an event that orchestrates glomerulosclerosis and the participation of other cells types has also been suggested. Recent findings clarify the role of tubular epithelium in mediating the generation of ECM producing cells in the tubule interstitium. Also, crosstalk between injured cells and myofibroblasts for amplification of the fibrogenic cascade in CKD occurs. The crucial conductor of these changes in the kidney is the transforming growth factor-β (TGF-β). Thus, this review focuses on the control of this cytokines signaling mechanisms and their dysregulation in CKD. Further, some of the promising interventional alternatives targeting TGF-β are also discussed.  相似文献   
955.
Fibroblast growth factor 21 is a critical circulating adipokine involving in metabolic disorders and various liver diseases. This study was performed to investigate whether FGF21 is also associated with the pathophysiology of biliary atresia. Serum FGF21 levels were measured in 57 BA patients and 20 age matched healthy controls. We also examined hepatic FGF21 mRNA expression and FGF21 protein levels in liver tissues obtained from 15 BA patients undergoing liver transplantation and 5 cases of pediatric donation after cardiac death donor without liver diseases by RT-PCR and Western blotting. Patients with BA showed significantly higher serum FGF21 levels than those without BA (554.7 pg/mL [83–2300] vs. 124.5 pg/mL [66–270], P < 0.05). Patients with BA also had significantly higher FGF21 mRNA and protein levels in hepatic tissues than control subjects. Serum FGF21 expression increased corresponding to the severity of liver fibrosis. Furthermore, serum FGF21 levels dropped significantly in BA patients within 6 months after liver transplantation and approached baseline in healthy controls (P > 0.05). In vivo, FXR knockout could significantly abrogate cholestasis induced FGF21 expression. FGF21 levels in serum and liver tissue increased significantly in BA patients. In vivo, cholestasis could induce FGF21 expression in FXR dependent manner.  相似文献   
956.
Drug delivery through the vagina is a novel and effective approach for treating embryonic diseases. Magnetic nanoparticles (MNPs) currently are used as drug delivery systems. The safety of MNPs for use with embryonic tissues remains unclear. We used pregnant mice to investigate the possible toxicity of MNPs toward neonatal liver at three embryonic ages using histochemical and immunohistochemical techniques. MNPs were instilled through the vaginas of pregnant mice at days 12 (E12), 15 (E15) and 17 (E17) after fertilization. We found MNPs in the neonatal liver parenchyma after delivery of the pups on day 20. We observed that MNPs caused mild apoptosis of hepatocytes, cytoplasmic vacuolation and lymphocytic infiltration in the neonatal liver after treatment at E15 compared to instillation at E12 and E17. We observed also that MNPs increased the production of caspase proteins and tumor necrosis factor receptor 2 proteins, which are indicators of apoptosis, in the neonatal liver after instillation of MNPs at E15 compared to instillation at E12 and E17. MNPs also increased the number of collagen fibers and the amounts of connective tissue growth factors in the neonatal liver parenchyma after instillation at E15 compared to instillation at E12 and E17. The general carbohydrates in the neonatal liver were decreased in a time-dependent manner after instillation at E17, E15 and E12 owing to the presence of MNPs in the parenchyma. Overall, we determined that MNPs were mildly toxic to neonatal liver.  相似文献   
957.
Non‐alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet‐induced fatty liver disease. This study examines the effects of arsenite potentiated diet‐induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet‐only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.  相似文献   
958.
A structure–activity relationship study was performed with ten 8-aminoquinoline-squaramides compounds active against liver stage malaria parasites, using human hepatoma cells (Huh7) infected by Plasmodium berghei parasites. In addition, their blood-schizontocidal activity was assessed against chloroquine-resistant W2 strain Plasmodium falciparum. Compound 3 was 7.3-fold more potent than the positive control primaquine against liver-stage parasites, illustrating the importance of the squarate moiety to activity.  相似文献   
959.
Liver-vessel segmentation plays an important role in vessel structure analysis for liver surgical planning. This paper presents a liver-vessel segmentation method based on extreme learning machine (ELM). Firstly, an anisotropic filter is used to remove noise while preserving vessel boundaries from the original computer tomography (CT) images. Then, based on the knowledge of prior shapes and geometrical structures, three classical vessel filters including Sato, Frangi and offset medialness filters together with the strain energy filter are used to extract vessel structure features. Finally, the ELM is applied to segment liver vessels from background voxels. Experimental results show that the proposed method can effectively segment liver vessels from abdominal CT images, and achieves good accuracy, sensitivity and specificity.  相似文献   
960.
Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression remains elusive. We assess the importance of the endogenous anticoagulant protein C pathway on disease progression during bleomycin‐induced pulmonary fibrosis. Wild‐type mice and mice with high endogenous activated protein C APC levels (APChigh) were subjected to bleomycin‐induced pulmonary fibrosis. Fibrosis was assesses by hydroxyproline and histochemical analysis. Macrophage recruitment was assessed immunohistochemically. In vitro, macrophage migration was analysed by transwell migration assays. Fourteen days after bleomycin instillation, APChigh mice developed pulmonary fibrosis to a similar degree as wild‐type mice. Interestingly, Aschcroft scores as well as lung hydroxyproline levels were significantly lower in APChigh mice than in wild‐type mice on day 28. The reduction in fibrosis in APChigh mice was accompanied by reduced macrophage numbers in their lungs and subsequent in vitro experiments showed that APC inhibits thrombin‐dependent macrophage migration. Our data suggest that high endogenous APC levels inhibit the progression of bleomycin‐induced pulmonary fibrosis and that APC modifies pulmonary fibrosis by limiting thrombin‐dependent macrophage recruitment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号