首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1625篇
  免费   43篇
  国内免费   139篇
  2024年   2篇
  2023年   34篇
  2022年   22篇
  2021年   42篇
  2020年   23篇
  2019年   28篇
  2018年   28篇
  2017年   32篇
  2016年   27篇
  2015年   30篇
  2014年   44篇
  2013年   81篇
  2012年   28篇
  2011年   74篇
  2010年   47篇
  2009年   91篇
  2008年   99篇
  2007年   105篇
  2006年   105篇
  2005年   97篇
  2004年   69篇
  2003年   81篇
  2002年   77篇
  2001年   51篇
  2000年   47篇
  1999年   59篇
  1998年   54篇
  1997年   48篇
  1996年   34篇
  1995年   31篇
  1994年   43篇
  1993年   26篇
  1992年   25篇
  1991年   21篇
  1990年   20篇
  1989年   13篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   11篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   11篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1807条查询结果,搜索用时 46 毫秒
21.
The effects of acclimatization of microbial populations, compound concentration, and media pH on the biodegradation of low concentration dichloromethane emissions in biofiltration systems was evaluated. Greater than 98% removal efficiency was achieved for dichloromethane at superficial velocities from 1 to 1.5 m(3)/m(3). min (reactor residence times of 1 and 0.7 min, respectively) and inlet concentrations of 3 and 50 ppm Although acclimatization of microbial populations to toluene occurred within 2 weeks of operation start-up, initial dichloromethane acclimatization took place over a period of 10 weeks. This period was shortened to 10 days when a laboratory grown consortium of dichloromethane degrading organism, isolated from a previously acclimatized column, was introduced into fresh biofilter media. The mixed culture consisted to 12 members, which together were able to degrade dichloromethane at concentrations up to 500 mg/L. Only one member of the consortium was able to degrade dichloromethane were sustained for more than 4 months in a biofilter column receiving an inlet gas stream with 3 ppm(v) of dichloromethane acidification of the column and resulting decline in performance occurred when a 50-ppm(v) inlet concentration was used. A biofilm model incorporating first order biodegradation kinetics provided a good fit to observed concentration profiles, and may prove to be a useful tool for designing biofiltration systems for low concentration VOC emissions. (c) 1994 John Wiley & Sons, Inc.  相似文献   
22.
Anaerobic acidogenesis of primary sludge: the role of solids retention time   总被引:2,自引:0,他引:2  
This research investigates the effect of solids retention time (SRT) on the acid-phase anaerobic digestion of primary sludge. A series of experiments were conducted using two continuous-flow 3-L units with the following configuration: a completely mixed reactor (CMR) with clarifier and solids recycle and an upflow anaerobic sludge blanket (UASB) reactor. Results show that C(2) to C(5) volatile fatty acids (VFA) were the predominant compounds formed. At a constant hydraulic retention time (HRT) of 12 h, variation in SRT from 10 to 20 days resulted in a slight increase in VFA production in both systems, but at a shorter SRT (5 days) a drastic drop in acid production was observed. In addition, the percent distribution of VFA was to some extent affected by the change in SRT. On the other hand, organic matter degradation [measured by the chemical oxygen demand (COD) specific solubilization rate or the percent volatile suspended solids (VSS) reduction] appeared to be independent of SRT, at least in the range investigated. The percent soluble COD in the form of VFA, however, increased steadily with increasing SRT, approaching the 90% level at 20 days. The remaining soluble COD in the effluent from these systems may be mainly attributed to metabolic intermediates and unused soluble substrate. (c) 1994 John Wiley & Sons, Inc.  相似文献   
23.
Antisera raised againstl-phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and a cationic cell-wall peroxidase, which had all been purified from suspension-cultured cells of French bean, have been used to carry out immunogold localisations in the growing plant. Immunoglobulin-G fractions were prepared from each antiserum and used to study the distribution of the enzymes in differentiating and wounded hypocotyls by immunogold techniques and visualisation by both light and electron microscopy. Following silver enhancement to amplify the signal, proteins were detected by confocal microscopy in both developing (pre-xylem/ phloem) and later metaxylem stelar tissue.l-Phenylalanine ammonia-lyase and C4H also accumulated in cells adjacent to metaxylem, presumably involved in maintaining a supply of phenylpropanoid precursors to the enucleated xylem for further lignin synthesis. In these cells, PAL subunits were cytosolic although some were associated with endomembrane. Cinnamate-4-hydroxylase was wholly associated with membrane and particularly high concentrations were found in the Golgi bodies. The cationic peroxidase accumulated in xylem at sites of secondary thickening and in the middle lamella. The three proteins are also involved in defensive lignification. Thus when visualised by light microscopy, PAL and C4H were seen to accumulate to high levels throughout the cell types in wound sites and especially in the epidermal cells. An even more intense general distribution was found upon hyperinduction of wounded cells with-aminooxy--phenylpropionic acid. At the subcellular level, PAL was found to be localised in the cytosol in the wounded cells; however, because of the loss of membrane through mechanical damage, association with membrane structures, particularly endoplasmic reticulum, in unwounded cells is not entirely ruled out. Cinnamate-4-hydroxylase was associated with membranes when these were preserved. In wounded tissue, the peroxidase was found at the growing edges of tylose-like structures in the vascular xylem.Abbreviations AOPP -aminooxy--phenylpropionic acid - C4H cinnamic acid-4-hydroxylase - CHS chalcone synthase - GRP glycine-rich glycoprotein - HRGP hydroxyproline-rich glycoprotein - Ig immunoglobulin - PAL phenylalanine ammonia-lyase G.P.B. thanks the Agicultural and Food Research Council for support.  相似文献   
24.
Polysaccharidases adsorbed on commercial amylodextrins were added to environmentally controlled composts of straw plus poultry manure. After 5 days of composting at 48°C, microbial enzyme activities and numbers of bacteria were higher in the treated compost than in the control. During the next phase at 80°C, between days 5 and 6, more C and N were solubilized in the treated compost. After introducing a microbial inoculum on day 6, and maintaining the substrate at 48°C, colonization by bacteria was faster in the treated compost and consequently, more fibre was degraded. Differences between composts in yields of Agaricus bisporus after 5 weeks of cropping were not significant (P=0.05).The authors are with INRA, Station de Recherches sur les Champignons, BP 81, 33883 Villenave d'Ornon, France  相似文献   
25.
When various lignin-related para-phenolic benzoic acids, para-phenolic cinnamic acids, para-phenolic phenylpropionic acids, the corresponding unsubstituted and 4-O-methylated derivatives, and 4-hydroxyl substituted benzaldehydes were tested on the growth of eight white-rot fungi, methylation of the 4-hydroxy substituent resulted, in most cases, in increased inhibition of fungal growth. This effect was most notable with monomethoxylated compounds. When the aromatic ring contained additional methoxyl substituents, the toxicity of the 4-O-methylated derivative was less pronounced. Marked inhibition of fungal growth was also observed with aromatic compounds lacking a para-substituent. Higher concentrations of aromatic aldehydes were manifestly more toxic than the corresponding carboxylic acid.J.A. Buswell is with the Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. K.-E.L. Eriksson is with the Department of Biochemistry, The University of Georgia, Athens, Georgia, 30602, USA.  相似文献   
26.
27.
A novel process has been used to biodegrade phenol present in an acidic (1 M HCI) and salty (5% w/w NaCl) synthetically bioreactor, in which the phenol present in the wastewater is separated from the inorganic components by means of a silicone rubber membrane. Transfer of the phenol from the wastewater and into a biological growth medium allows biodegradation to proceed under controlled conditions which are unaffected by the hostile inorganic composition of the wastewater. At a wastewater flow rate of 18 mL h(-1) (contact time 6 h), 98.5% of the phenol present in the wastewater at an inlet concentration of 1000 mg ( (-1) ) was degraded; at a contact time of 1.9 h, 65% of the phenol was degraded. Phenol degradation was accompanied by growth of a biofilm on the membrane tubes and by conversion of approximately 80% of the carbon entering the system to CO(2) carbon. Analysis of the transport of phenol across the membrane revealed that the major resistance to mass transfer arose in the diffusion of phenol across the silicone rubber membrane. A mathematical model was used to describe the transfer of phenol across the membrane and the subsequent diffusion and reaction of phenol in the biofilm attached to the membrane tube. This analysis showed that (a) the attached biofilm significantly lowers the mass transfer driving force for phenol across the membrane, and (b) oxygen concentration limits the phenol degradation rate in the biofilm. These conclusions from the model are consistent with the experimental results. (c) 1993 Wiley & Sons, Inc.  相似文献   
28.
The decomposition of the amidinohydrazone-type insecticide Hydramethylnon (HMN) by soil fungi has been investigated. A simple spectrophotometric method was developed for the estimation of HMN in soil and fungal culture media. HMN was found to be degraded in soil with a half life of 14 to 25 days.Degradation of HMN by the lignolytic fungus,Phanerochaete chrysosporium yielded two major breakdown products;p-(trifluoromethyl)-cinnamic acid (TFCA) andp-(trifluoromethyl)-benzoic acid (TFBA). TFCA was converted to TFBA which was subsequently metabolised via themeta-fission pathway. Fluoride release from HMN could not be detected.Abbreviations BzDAc benzene, dioxane, acetic acid (60: 36: 4) - DCM dichloroethane - DNPH 2,4-dinitro-phenylhydrazine - HMN Hydramethylnon - TDAc toluene, dioxane, acetic acid (90: 30: 1) - TFCA p-(trifluoromethyl)-cinnamic acid - TFBA p-(trifluoromethyl)-benzoic acid - TFP 1,5-bis(trifluoro-p-tolyl)-1,4-pentadien-3-one - VA veratryl alcohol  相似文献   
29.
The dominant bacteriaPseudomonas sp. andArthrobacter sp. were isolated from the standing water of carbofuran-retreatedAzolla plot.Arthrobacter sp. hydrolysed carbofuran added to the mineral salts medium as a sole source of carbon and nitrogen while no degradation occurred withPseudomonas sp. Interestingly, when the medium containing carbofuran was inoculated with bothArthrobacter sp. andPseudomonas sp., a synergistic increase in its hydrolysis and subsequent release of CO2 from the side chain was noticed. This synergistic interaction was better expressed at 25° C than at 35° C. Likewise, related carbamates, carbaryl, bendiocarb and carbosulfan were more rapidly degraded in the combined presence of both bacterial isolates.  相似文献   
30.
BothPseudomonas putida F1 and a mixed culture were used to study TCE degradation in continuous culture under aerobic, non-methanotrophic conditions. TCE mass balance studies were performed with continuous culture reactors to determine the total percent removed in the reactors, and to quantify the percent removed by air stripping and biodegradation. Adsorption of TCE to biomass was assumed to be negligible. This research demonstrated the feasibility of treating TCE-contaminated water under aerobic, non-methanotrophic conditions with a mixed-culture, continuous-flow system.Initially glucose and acetate were fed as primary substrates. Pnenol, which has been shown to induce TCE-degrading enzymes, was fed at a much lower concentration (20mg/L). Little degradation of TCE was observed when acetate and glucose were the primary substrates. After omitting glucose and acetate from the feed and increasing the phenol concentration to 50mg/L, TCE biotransformation was observed at a significant level (46%). When the phenol concentration in the feed was increased to 420mg/L, 85% of the incoming TCE was estimated to have been biodegraded. Under the same conditions, phenol utilization by the mixed culture was greater than that ofP. putida F1, and TCE degradation by the mixed culture (85%) exceeded that ofP. putida F1 (55%). The estimated percent-of-TCE biodegraded by the mixed culture was consistently greater than 80% when phenol was fed at 420mg/L. Biodegradation of TCE was also observed in mixed-culture, batch experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号