首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3214篇
  免费   242篇
  国内免费   425篇
  2023年   45篇
  2022年   49篇
  2021年   68篇
  2020年   78篇
  2019年   96篇
  2018年   85篇
  2017年   91篇
  2016年   108篇
  2015年   104篇
  2014年   127篇
  2013年   232篇
  2012年   94篇
  2011年   140篇
  2010年   113篇
  2009年   150篇
  2008年   169篇
  2007年   180篇
  2006年   159篇
  2005年   121篇
  2004年   118篇
  2003年   111篇
  2002年   94篇
  2001年   75篇
  2000年   67篇
  1999年   70篇
  1998年   88篇
  1997年   66篇
  1996年   52篇
  1995年   41篇
  1994年   55篇
  1993年   67篇
  1992年   53篇
  1991年   32篇
  1990年   51篇
  1989年   53篇
  1988年   49篇
  1987年   40篇
  1986年   47篇
  1985年   37篇
  1984年   52篇
  1983年   25篇
  1982年   39篇
  1981年   47篇
  1980年   54篇
  1979年   34篇
  1978年   21篇
  1977年   20篇
  1976年   18篇
  1973年   47篇
  1972年   17篇
排序方式: 共有3881条查询结果,搜索用时 46 毫秒
131.
Y. Kobayashi  S. Köster  U. Heber 《BBA》1982,682(1):44-54
Scattering of green light and chlorophyll fluorescence by spinach leaves kept in a stream of air or nitrogen were compared with leaf adenylate levels during illumination with blue, red or far-red light. Energy charge and ATP-ADP ratios exhibited considerable variability in different leaves both in the dark and in the light. Variability is explained by different possible states of the reaction oxidizing triose phosphate or reducing 3-phosphoglycerate. Except when oxygen levels were low, there was an inverse relationship between light scattering and chlorophyll fluorescence during illumination with blue or red light. When CO2 was added to a stream of CO2-free air, chlorophyll fluorescence increased, sometimes after a transient decrease, and both light scattering and leaf ATPADP ratios decreased. Similar observations were made when air was replaced by nitrogen under blue or high-intensity red light. Under these conditions, over-reduction caused inhibition of electron transport and phosphorylation in chloroplasts. However, when air was replaced by nitrogen during illumination with low-intensity red light or far-red light, light scattering increased instead of decreasing. Under these light conditions, ATPADP ratios were maintained in the light. They decreased drastically only after darkening. Although ATPADP ratios responded faster than light scattering or the slow secondary decline of chlorophyll fluorescence due to illumination, it appeared that in the steady state, light scattering and chlorophyll fluorescence are useful indicators of the phosphorylation state of the leaf adenylate system at least under aerobic conditions, when chloroplast and extrachloroplast adenylate systems can effectively communicate.  相似文献   
132.
Mature mouse oocytes were exposed prior to in vitro fertilization to visible light during 1, 2, or 4 hr at an intensity of 4,000 lux. Compared to controls cultured under identical conditions but protected from light, exposed eggs did not show any significant modification of cleavage speed and rate. After transfer of blastocysts obtained in vitro in uteri of pseudopregnant females, the implantation rate and the proportion of normal fetuses were not found to be different in relation to preliminary light exposure of oocytes fertilized and cultured in vitro.  相似文献   
133.
The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.Summary of a Plenary Lecture presented by the author in Vienna, August, 1990  相似文献   
134.
几种生态因子对菹草光合作用的影响   总被引:39,自引:2,他引:37  
本文研究了光照、pH、温度对菹草光合作用的影响。在一定温度条件下,菹草的净产氧量与一定范围的光照强度呈直线相关。菹草的光补偿点随温度的上升而上升。在菹草自然生活的环境中,温度低于30℃时,升温有利于菹草的光合作用。高pH(PH>10.0)下碳源缺乏对菹草的光合作用影响较大。高pH与强光照射的协同作用严重影响菹草的光合作用。水温与氮、磷营养盐不足并非夏季自然水体中菹草死亡的主要原因。而不良光照(水表层光抑制,中、下层光饥饿)和高pH下缺乏光合碳源的协同作用便可能导致菹草夏季死亡。  相似文献   
135.
Various parameters of the rat pineal gland display a 24-h rhythm. However, nothing is known about possible 24-h variations in cyclic GMP (cGMP) metabolism. In the present study, 24-h variations in pineal gland cGMP accumulation were investigated by determining the increase in cGMP level with and without inhibitors of phosphodiesterase at different time points over a light/dark cycle (12/12 h). Furthermore, the activity of guanylate cyclase (GC) was determined under substrate-saturated conditions regarding the cytosolic and particulate forms of the enzyme. It has been found that cGMP accumulation and GC activity display biphasic 24-h variations with two peaks--one approximately 7 h after lights "on" and the other approximately 7 h after lights "off." The activity of cytosolic GC remains unchanged in the presence of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine, indicating that 24-h variations in the activity do not reflect changes in the synthesis of the GC stimulator NO.  相似文献   
136.
The acquisition of inorganic carbon by four red macroalgae   总被引:6,自引:0,他引:6  
Photosynthesis was studied in four species of red marine macroalgae: Palmaria palmata, Laurencia pinnatifida, Lomentaria articulata and Delesseria sanguinea. The rate of O2 evolution for submersed photosynthesis was measured as a function of incident photon flux density at normal pH and inorganic carbon concentration (pH 8.0, 2 mol m–3), and as a function of inorganic carbon concentration at pH 8.0 at saturating and at limiting photon flux density. The rate of CO2 uptake was measured for emersed photosynthesis as a function of CO2 partial pressure at saturating photon flux density. Previous pH-drift results suggest that Palmaria and Laurencia are able to use HCO inf3 sup– as well as CO2 whereas Lomentaria and Delesseria are restricted to CO2. None of the algae are saturated by 2 mol m–3 inorganic carbon at high light (400 mol m–2 s–1) but are saturated at low light (35 mol m–2 s–1). The inorganic C concentration at which half the light-saturated rate of O2 evolution is achieved is higher for Palmaria and Laurencia (1.51 and 1.85 mol m–3) than for Lomentaria and Delesseria (0.772 and 0.841 mol m–3). The lower values for the latter two species could reflect their putative restriction to CO2. If expressed in terms of CO2, the half-saturation values yield 7.2 and 7.8 mmol m–3 respectively, which are very similar to values obtained previously during pH-drift experiments but at lower concentrations of HCO inf3 sup– , consistent with restriction to CO2. The photosynthetic conductance (m s–1), calculated from the initial slope for photosynthesis at low concentrations of inorganic carbon, correlates with the suggested ability to extract inorganic carbon based on pH-drift results. Calculations made assuming that CO2 is the only species diffusing across the boundary layer are consistent with boundary layer thicknesses of 20 and 19 m for Lomentaria and Delesseria respectively, which is feasible given the rapid water movement in the experiments. For Laurencia however, an unreasonably small boundary layer thickness of 6 m is necessary to explain the flux, which indicates co-diffusion by HCO inf3 sup– . In the apparent absence of external carbonic anhydrase, direct uptake of HCO inf3 sup– , rather than external conversion to CO2 is indicated in this species. In air, the CO2 concentration at which photosynthesis is half-maximal increases in the same order as the ability to raise pH in drift experiments. At 21 kPa the CO2 compensation partial pressures for Palmaria and Laurencia at 0.56 and 1.3 Pa are low enough to suggest a carbon-concentrating mechanism is operating, while those of Lomentaria at 1.8 Pa and particularly that of Delesseria at 4.5 Pa could be explained without a carbon-concentrating mechanism. The algae tested (all except Delesseria) showed more O2 evolution than could be accounted for with a photosynthetic quotient of 1.0 and uncatalysed conversion of HCO inf3 sup– to CO2 outside the cell in high light at pH 8.0 when high algal fresh weight per unit medium was used. These results are concordant with other data suggesting use of HCO inf3 sup– by Palmaria and Laurencia, but discordant with the rest of the available information in indicating use of HCO inf3 sup– by Lomentaria. The reason for this is unclear. The lightsaturated rate of O2 evolution on an algal area basis and the photon flux density needed to saturate photosynthesis were related partly to the habitat from which the seaweeds were collected, but more strongly to the ability to use HCO inf3 sup– . Values for the two users of HCO inf3 sup– , Palmaria (population used was intertidal; also occurs subtidally) and Laurencia (intertidal/shaded intertidal), were greater than for Lomentaria (shaded intertidal), which was greater than Delesseria (subtidal), both of which are believed to be restricted to CO2. In accordance with earlier 13C data and, for Delesseria, estimates of the achieved growth rates in situ, carbon is likely to be saturating and use of HCO inf3 sup– is unlikely to occur in the normal low-light habitats of Lomentaria and Delesseria. Analysis of N-use efficiencies show that they are closer to the low-CO2-affinity Laminariales than the high-CO2-affinity Fucaceae.  相似文献   
137.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   
138.
A comparison of the photoregulation of development has been made for etiolated and light-grown plants of wild-type (WT) tobacco (Nicotiana tabacun L.) and an isogenic transgenic line which expresses an introduced oat phytochrome gene (phyA) under the control of a constitutive viral promoter. Etiolated seedlings of both the WT and transgenic line showed irradiance-dependent inhibition of hypocotyl growth under continuous far-red (FR) light; transgenic seedlings showed a greater level of inhibition under a given fluence rate and this is considered to be the result of the heterologous phytochrome protein (PhyA) functioning in a compatible manner with the native etiolated phytochrome. Deetiolation of WT seedlings resulted in a loss of responsiveness to prolonged FR. Light-grown transgenic seedlings, however, continued to respond in an irradiance-dependent manner to prolonged FR and it is proposed that this is a specific function of the constitutive PhyA. Mature green plants of the WT and transgenic lines showed a qualitatively similar growth promotion to a brief end-of-day FR-treatment but this response was abolished in the transgenic plants under prolonged irradiation by this same FR source. Growth inhibition (McCormac et al. 1991, Planta 185, 162–170) and enhanced levels of nitrate-reductase activity under irradiance of low red:far-red ratio, as achieved by the FR-supplementation of white light, emphasised that the introduced PhyA was eliciting an aberrant mode of photoresponse compared with the normal phytochrome population of light-grown plants. Total levels of the oat-encoded phytochrome in the etiolated transgenic tobacco were shown to be influenced by the wavelength of continuous irradiation in a manner which was qualitatively similar to that seen for the native, etiolated tobacco phytochrome, and distinct from that seen in etiolated oat tissues. These results are discussed in terms of the proposal that the constitutive oat-PhyA pool in the transgenic plants leads to a persistence of a mode of response normally restricted to the situation in etiolated plants.Abbreviations FR far-red light - R red light - WL white light - WL + FR white light supplemented with FR - HIR high-irradiance response - PAR photosynthetically active radiation - Pr, Pfr R- and FR-absorbing forms of phytochrome - Ptot total phytochrome - phyA (PhyA) gene (encoded protein) for phytochrome - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.M.; J.R. Cherry and R.D. Vierstra, (Department of Horticulture, University of Wisconsin-Madison, USA) are thanked for the provision of the transgenic tobacco line.  相似文献   
139.
Using a combination of mathematical modeling and field studies we showed that in dense stands of growing herbaceous plants the vertical pattern of leaf nitrogen distribution resembles the pattern of mean light attenuation in the stand and hence tends to maximize total daily photosynthetic carbon gain of the whole stand. Flowering represents a strong sink of nitrogen away from the photosynthetic apparatus and in herbs like Solidago altissima it induces leaf shedding. We studied both the effect of nitrogen reallocation and leaf shedding on the whole canopy photosynthesis and changes in leaf nitrogen distributions in stands moving from the growing to the flowering stage. Despite a decrease in leaf area index and total nitrogen available for photosynthesis in the flowering stand, the leaf nitrogen distribution here also leads to an almost maximum canopy photosynthesis. In both the growing and the flowering stands the leaf area index was higher than calculated optimum values. It is pointed out that this should not necessarily be interpreted as non-adaptive.  相似文献   
140.
The relationship between flight activity, reproduction and age of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) was studied using tethered flight assays. Flights began on the day of emergence, peaking on days four and five in females and on day five in males, and lasted for nine to ten days. The development of flight capacity was well synchronised with the build-up and decline of reproductive behaviours (calling, mating and oviposition). Flights of E. postvittana are thus inter-reproductive, and there is no obvious pre-oviposition period. Males were more active than females as 45–50% of male moths in comparison to 15–18% of female moths were capable of prolonged flights during the peak activity period. The results suggest that flights of E. postvittana are appetitive flights to a large extent, but it is suggested that some individuals may migrate, as there is no diapause in this species. The sexual dimorphism of flight capacity is discussed in relation to those of other tortricids and Lepidoptera in general.
Zusammenfassung Die Beziehungen zwischen Flugaktivität, Fortpflanzung und Alter von Epiphyas postvittana (Walker) (Tortricidae) wurden untersucht mit Hilfe von angebudenen Flugapparaten. Flüge begannen am Tage des Schlüpfens, mit einen Maximum am vierten und fünften Tag bei Weibchen und am fünten Tag bei Männchen, und dauerten neun bis zehn Tage. Die Entwicklung des Flugvermögens war gut mit der Zu- und Abnahme des Fortpflanzungsverhaltens (Rufen, Kopulieren und Eiablage) korreliert. Flüge von E. postivittana finden also während der Fortpflanzungsperiode statt, und es gibt keine deutliche Periode vor der Eiablage. Männchen waren aktiver als Weibchen: 45–50% der Männchen verglichen mit 15–18% der Weibchen waren zu langen Flügen während der maximalen Aktivitätsperiode fähig. Das Ergebnis deutet an, das Flüge von E. postvittana im grossen Masse Appetenzflüge sind, doch es wird auf die Möglichkeit hingewiesen, dass einige Individuen wandern können, da die Art keine Diapause hat. Der Geschlechtsdimorphismus in der Flugaktivität wird diskutiert und verglichen mit dem anderer Tortriciden und der Lepidoptera allgemein.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号