首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11693篇
  免费   768篇
  国内免费   633篇
  2023年   143篇
  2022年   99篇
  2021年   217篇
  2020年   347篇
  2019年   348篇
  2018年   374篇
  2017年   309篇
  2016年   352篇
  2015年   362篇
  2014年   507篇
  2013年   900篇
  2012年   384篇
  2011年   455篇
  2010年   363篇
  2009年   509篇
  2008年   532篇
  2007年   546篇
  2006年   510篇
  2005年   485篇
  2004年   497篇
  2003年   451篇
  2002年   414篇
  2001年   291篇
  2000年   269篇
  1999年   262篇
  1998年   299篇
  1997年   222篇
  1996年   210篇
  1995年   209篇
  1994年   190篇
  1993年   187篇
  1992年   182篇
  1991年   143篇
  1990年   151篇
  1989年   126篇
  1988年   100篇
  1987年   114篇
  1986年   113篇
  1985年   111篇
  1984年   105篇
  1983年   65篇
  1982年   87篇
  1981年   81篇
  1980年   96篇
  1979年   80篇
  1978年   54篇
  1977年   43篇
  1976年   41篇
  1973年   64篇
  1972年   24篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   
992.
Embryogenic and non-embryogenic callus lines derived from the same diploid Cyclamen persicum genotype (`Purple Flamed') were analyzed by flow cytometry and compared to the initial plant material. The DNA content of the diploid plant in the greenhouse was 1.12 pg DNA/2C as estimated in relation to the internal standards tomato nuclei and chicken erythrocytes. In both callus lines the majority of cells contained the same amount of DNA as the initial plant, indicating that no polyploidization has taken place after 5 years of culture on medium containing 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.8 mg/l 6-(γ-γ-dimethylallylamino)purine(zip). Thus, our data suggest that in Cyclamen callus lines there was no strict correlation between the ploidy level and the ability to produce somatic embryos. Furthermore, following the proportion of cells in the three phases of the cell cycle (G0/G1, S, G2/M) during one subculture period of 4 weeks revealed high division activity within the first 2 weeks for both callus lines cultured on the 2,4-D-containing medium. However, when transferred to hormone-free medium, the division activity of the embryogenic cell line decreased markedly, corresponding to the differentiation of somatic embryos. In contrast, for the non-embryogenic callus an increase in cells in the G2/M phase was observed. Received: 22 November 1996 / Revision received: 6 January 1997 / Accepted: 20 February 1997  相似文献   
993.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   
994.
The nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG) has been identified as a powerful antiproliferative substance when acting on hybridoma cells. In the range of 10 nM to 100 nM concentrations this agent reduces cell growth rate, while its apoptosis-inducing activity is marginal. Marked induction of apoptosis can be observed at micromolar and higher order concentrations. In PMEG-supplemented media the cell cycle progression is perturbed, the flow-cytometric DNA profile shows a higher proportion of cells in the S and G2/M phases of the cell cycle. Concomitantly with the reduction of the growth rate, the specific monoclonal antibody production rate may rise by 20–27%. Addition of PMEG at the end of the exponential phase of a batch culture results in an enhancement of the final monoclonal antibody concentration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
995.
Kinetic resistance plays a major role in the failure of chemotherapy towards many solid tumors. Kinetic resistance to cytotoxic drugs can be reproduced in vitro by growing the cells as multicellular spheroids (Multicellular Resistance) or as hyperconfluent cultures (Confluence-Dependent Resistance). Recent findings on the cell cycle regulation have permitted a better understanding why cancer cells which arrest in long quiescent phases are poorly sensitive to cell-cycle specific anticancer drugs. Two cyclin-dependent kinase inhibitors (CDKI) seem particularly involved in the cell cycle arrest at the G1 to S transition checkpoint: the p53-dependent p21cip1 protein which is activated by DNA damage and the p27kip1 which is a mediator of the contact inhibition signal. Cell quiescence could alter drug-induced apoptosis which is partly dependent on an active progression in the cell cycle and which is facilitated by overexpression of oncogenes such as c-Myc or cyclins. Investigations are yet necessary to determine the influence of the cell cycle on the balance between antagonizing (bcl-2, bcl-XL...) or stimulating (Bax, Bcl-XS, Fas...) factors in chemotherapy-induced apoptosis. Quiescent cells could also be protected from toxic agents by an enhanced expression of stress proteins, such as HSP27 which is induced by confluence. New strategies are required to circumvent kinetic resistance of solid tumors: adequate choice of anticancer agents whose activity is not altered by quiescence (radiation, cisplatin), recruitment from G1 to S/G2 phases by cell pretreatment with alkylating drugs or attenuation of CDKI activity by specific inhibitors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
996.
The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
997.
In order to clarify the role of micro-organisms in the carbon cycle of the boreal forest ecosystem, the vertical distribution of soil carbon, soil microbial biomass and respiratory activity was studied in a black spruce forest near Candle Lake in Saskatchewan, Canada. The total amount of carbon contained in moss and soil layers (to the depth of 50cm beneath the mineral soil surface) was 7.2kgm–2, about 47% of which was in the L and FH horizons of the soil. Soil microbial biomass per dry weight of soil was largest in the L horizon, while the biomass per ground area was largest in the FH horizon. Soil respiration rate, measured using a portable infrared gas analyzer, was highest in the FH horizon, exceeding 50% of the total soil respiration. Low but significant CO2 emission was detected even in deeper soil horizon (E horizon). We also examined the respiration rate of cut roots and the effect of root excision on respiration. The contribution of root respiration to total soil respiration, calculated from root biomass and respiration rate of cut roots, was about 54%. The amount of carbon evolved through microbial respiration during the snow-free season (June–October) was estimated as 221gCm–2. Micro-organisms in the L horizon showed high respiratory activity as compared with those in deeper soil horizons.  相似文献   
998.
The tobaccoNPK1 gene encodes a homolog of mitogenactivated protein kinase kinase kinases. We have recently identified tobacco kinesin-like proteins (NACK1/2) as activators for NPK1. Immunochemical analyses of NPK1 and NACK1 proteins suggest that NPK1 is involved in the regulation of some process in the M phase of the plant cell cycle. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   
999.
 An analytical link is proposed between branchwood volume and branchiness. A segmented linear model with one parameter is used to describe the branch basal area density along the tree bole and integrated to find a function describing the cumulative branch basal area. It appears that the bases of insertion of the branches defining the base of the light crown correspond to the maximum branch basal area density along the bole. This function is then used together with an individual branch volume equation to find a model that estimates branchwood volume. This model is calibrated with data gathered in 15 stands dominated by sugar maple (Acer saccharum Marsh.) in southern Quebec. A comparison is made with other models of branchwood volume found in the literature. Received: 22 August 1997 / Accepted: 9 February 1998  相似文献   
1000.
 Foliar inclination angles, petiole morphology and dry matter partitioning between assimilative and support biomass were studied in shade-intolerant Populus tremula L. and shade-tolerant Tilia cordata Mill. along a natural light gradient across the canopy. The leaves of sub-canopy species T. cordata were on average exposed to lower irradiances, and they were also more horizontal with greater blade inclination angles (ϕB, defined as the angle between the leaf fall-line and the horizon; ϕB was positive for the leaves inclined upwards, and negative for the leaves inclined downwards) than those in P. tremula. Seasonal average daily integrated quantum flux density (Q int, mol m–2 day–1) and ϕB were not related in T. cordata, and only a weak negative effect of Q int on ϕB was detected in P. tremula. Nevertheless, when both species were pooled, there was a strong negative relationship between Q int and ϕB, implying that the leaves became progressively vertical with increasing height in the canopy. Interspecific differences in foliage inclination were mainly related to petiole morphology, in particular to petiole length, rather than to contrasting biomass investment patterns between assimilative and support tissues within the leaf. It was suggested that more horizontal leaves, resulting from the species-specific structure of petioles, partly explain the superior performance of shade-tolerant T. cordata in the understory and the sub-canopy. Received: 13 November 1997 / Accepted: 6 March 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号