首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1904篇
  免费   129篇
  国内免费   161篇
  2024年   5篇
  2023年   14篇
  2022年   16篇
  2021年   25篇
  2020年   18篇
  2019年   21篇
  2018年   34篇
  2017年   40篇
  2016年   28篇
  2015年   40篇
  2014年   54篇
  2013年   51篇
  2012年   45篇
  2011年   51篇
  2010年   38篇
  2009年   115篇
  2008年   111篇
  2007年   114篇
  2006年   116篇
  2005年   108篇
  2004年   74篇
  2003年   58篇
  2002年   52篇
  2001年   40篇
  2000年   59篇
  1999年   69篇
  1998年   65篇
  1997年   59篇
  1996年   50篇
  1995年   41篇
  1994年   54篇
  1993年   52篇
  1992年   49篇
  1991年   52篇
  1990年   47篇
  1989年   37篇
  1988年   44篇
  1987年   36篇
  1986年   30篇
  1985年   33篇
  1984年   33篇
  1983年   11篇
  1982年   22篇
  1981年   29篇
  1980年   19篇
  1979年   15篇
  1978年   7篇
  1977年   8篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2194条查询结果,搜索用时 31 毫秒
121.
Summary The relative toxicity of nitrapyrin 2-chloro-6-(trichloromethyl) pyridine and ATC (4-amino-1, 2, 4-triazole) on the growth of chick peas (Cicer arietinum L.) cow peas (Vigna sinensis L.), green beans (Phaseolus vulgaris L.), green peas (Pisum sativum L.) and mung beans (Phaseolus aureus Roxb.) and their effectiveness as nitrification inhibitor were studied under greenhouse conditions. ATC produced no toxicity symptoms in green peas, whereas resulted in leaf chlorosis in cow peas, chick peas and green beans. However, nitrapyrin toxicity appeared as leaf chlorosis in cow peas, and interveinal chlorosis in chick peas. Moreover, nitrapyrin-treated green beans and peas developed leaf curling and cupping. Although ATC had no significant effect on growth, a suppression in plant growth was associated with nitrapyrin application. Furthermore, green beans was the most resistant and chick peas the most sensitive to nitrapyrin. Nitrapyrin was more effective nitrification inhibitor than ACT, especially at the lower rates.  相似文献   
122.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   
123.
Litterfall was sampled in 3- to 7-year-old irrigated and fertilized plantings of Populus Tristis#1 in northern Wisconsin. Leaves accounted for more than 90 per cent of the total litter and reached an asymptotic value of about 4,000 to 4,200 kg/ha. Leaf litterfall culminated in late September or first half of October. Inadequate light appeared to be responsible for an early (June) leaf fall in dense plantings. The maximum cumulative leaf area index ranged from 8.4 to 8.7. The pattern of foliation and defoliation was similar: it started with small leaves in the lower canopy and ended with large leaves of the upper canopy. Longevity of the small leaves was shorter than that of the large leaves. Leaf size was positively affected by fertilization but was not affected by a discontinuation of irrigation by mid-July during the droughty 1976. The specific leaf weight ranged from 2.6 mg/cm2 in the lower canopy to 10.2 mg/cm2 in the upper canopy. The specific leaf weight of litter leaves was 4 to 38 per cent lower than that of green leaves of the same size.  相似文献   
124.
The technique of EDTA-enhanced phloem exudation (King and Zeevaart, 1974: Plant Physiol. 53, 96–103) was evaluated with respect to the collection and identification of amino acids exported from senescing wheat leaves. Whilst the characteristics of the exudate collected conform with many of the accepted properties of phloem exudate, unexpectedly high molar proportions of phenylalanine and tyrosine were observed. By comparing exudation into a range chelator solutions with exudation into water, the increased exudation of phenylalanine and tyrosine relative to the other amino acids occurring when ethylene-diaminetetracetic acid was used, was considered to an artefact.In plants thought to be relying heavily on mobilisation of protein reserves to satisfy the nitrogen requirements of the grain, the major amino acids present in flag-leaf phloem exudate were glutamate, aspartate, serine, alanine and glycine. Only small proportions of amides were present until late in senescence when glutamine became the major amino acid in phloem exudate (25 molar-%). Glutamine was always the major amino acid in xylem sap (50 molar-%).The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.3) and asparagine synthetase (EC 5.3.5.4) were measured in the flag leaf throughout the grain-filling period. Glutamine synthetase and glutamate-synthase activities declined during this period. Glutamate-dehydrogenase activity was markedly unchanged despite variation in the number of multiple forms visualised after gel electrophoresis. The activity of the enzyme reached a peak only very late in the course of senescence of the flag leaf. No asparagine-synthetase activity could be detected in the flag leaf during the grain-filling period.II. Peoples et al. (1980)  相似文献   
125.
The role of three-turgor-related cellular parameters, the osmotic potential ( s), the wall yield stress (Y) and the apparent hydraulic conductivity (L'p), in the initiation of ligh-induced expansion of bean (Phaseolus vulgaris L.) leaves has been determined. Although light causes an increase in the total solute content of leaf cells, the water uptake accompanying growth results in a slight increase in s. Y is about 4 bar; and is unaffected by light. L'p, as calculated from growth rates and isopiestic measurements of leaf water potential, is only slightly greater in rapidly-growing leaves. The turgor pressure of growing cells is lower than that of the controls by about 35%. We conclude that light does not induce cell enlargement in the leaf by altering any of the above parameters, but does so primarily by increasing wall extensibility.Abbreviations and symbols RL red light - WL white light - L'p apparent hydraulic conductivity - OC osmotic concentration - Y wall yield stress - s osmotic potential  相似文献   
126.
S. T. C. Wright 《Planta》1981,153(2):172-180
Light was found to inhibit substantially (i.e. up to 88%) the production of ethylene induced by water stress in excised wheat leaves and from the shoots of intact plants. The relatively small amounts of ethylene emanating fron non-stressed leaves were also inhibited by light but to a smaller degree (i.e. up to 61%). In water-stressed leaves the degree of light inhibition of ethylene production was shown to be related to the age of the leaves; the amounts of ethylene diffusing from young leaves (i.e. 6-days old) was inhibited 52% by light whereas in older leaves (i.e. 9-days old) it was inhibited by 85%. Previous studies [Wright (1979) Planta 144, 179–188 and (1980) Planta 148, 381–388] had shown that application of 6-benzyladenine (BA) to leaves a day before wilting, greatly increases the amount of ethylene diffusing from the leaves following wilting (e.g. 8-fold), and to smaller degrees do applications of indole-3-acetic acid (IAA) and gibberellic acid (GA3). On the other hand abscisic acid (ABA) treatment reduces the amount of ethylene produced. In these earlier experiments the ethylene was collected from leaves held under dark or near-dark conditions, so in the present study the activities of these growth regulators (10-4 mol l-1 solutions) under dark and light conditions were compared. It was found that they maintained the same relative activities on ethylene emanation (i.e. BA>IAA>GA3>water controls>ABA) under both light and dark conditions. However, because of the inhibitory effect of light, the absolute amounts of ethylene produced from all treatments were always much higher in the dark than in the light (usually about a 6-fold difference). An interesting effect of light treatment on ethylene biosynthesis was found when water-stressed leaves were kept in dark chambers for 41/2 h and then transferred to light. Quite unexpectedly, instead of the rate of ethylene production falling immediately, it continued to be produced at the dark rate (i.e. no light inhibition!) for over 2 h before the rate began to decline, and for a much longer period (i.e. in excess of 41/2 h) if the leaves had previously been sprayed with BA. Predictably, leaves placed in the light (i.e. in leaf chambers) and then transferred to darkness, immediately or very soon produced ethylene at the dark rate. One explanation of these results, which is discussed, would be that the biosynthesis of an ethylene precursor requires an obligatory dark stage. The possible implications of these studies to a survival role of ethylene in plants during periods of water stress is discussed.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA 6-benzyladenine - GA3 gibberellic acid - GLC gas-liquid chromatography - IAA indole-3-acetic acid - TLC thin-layer chromatography - leaf leaf water potential  相似文献   
127.
Paul B. Green  Jeanne M. Lang 《Planta》1981,151(5):413-426
Polarity shifts occur during organogenesis. The histological criterion for polarity is the direction of cell division. The biophysical criterion is the orientation of reinforcing cellulose microfibrils which lie normal to the organ axis and which determine the preferred growth direction. Using cell pattern to deduce cell lineage, and polarized light to study cellulose alignment, both aspects of polarity were examined in the epidermis of regenerating G. paraguayense. In this system new leaves and a stem arise from parallel cell files on a mature leaf. Large (90°) shifts in polarity occur in regions of the epidermis to give the new organs radial symmetry in the surface plane (files radiating from a pole). Study of the shifts in the epidermis showed that, during certain stages, shifts in the division direction are accompanied by shifts in the cellulose deposition direction, as expected. The new cellulose orientation is parallel to the new cross wall. During normal organ extension, however, shifts in division direction do not bring on changes in cellulose pattern. Thus the coupling between the two kinds of polarity is facultative. This variable relation is used in a biophysical model which can account for the reorganization of cell file pattern and cellulose reinforcement pattern into the radial symmetry of the new organ.  相似文献   
128.
The effects of three levels of moisture under greenhouse conditions and also identical moisture levels under field conditions, on the growth yield and water relations of two tomato cultivars, Fireball and Ife I, were investigated. The objective was to ascertain the drought susceptibility of these two tomato cultivars. The cultivar, Ife I, was more drought susceptible than Fireball and the drought susceptibility increased with the level of soil water stress. The drought tolerance, of Fireball is attributed to a lower leaf area, better root system development in terms of average root length and rooting depth, and a higher leaf water potential. The higher leaf stomatal resistances of Fireball variety suggest an inbuilt mechanism to regulate water vapour flow in times of stress.  相似文献   
129.
Anatomical and developmental studies have been made ofHistiopteris incisa in order to obtain a reasonable interpretation of the so-called extra-axillary bud. Single, or rarely two extra-axillary buds arise on the lateral side of the petiolar base. The branch trace appears to depart from the basiscopic margin of the leaf trace. At the earliest stage of the leaf initiation, the leaf apical cell is cut off in one of the prismatic cells of the shoot apical meristem. The leaf apical cell, then, cuts off segments successively to form a well-defined group of derivatives. On the other hand, a well-recognized cell group called “outer neighboring cell group”,onc, is found adjacent to the abaxial boundary of the derivatives of the leaf apical cell. This group of cells does not originate directly in the mother cell of the leaf apical cell. The primordium of the extra-axillary bud is always initiated in the superficial pillar-shaped cell layer ofonc. The leaf primordium may consist of two parts, the distal part derived from the leaf apical cell and the basal part from the adjacent cells includingonc. These facts suggest that the extra-axillary bud is of foliar nature. This study was partly supported by a Grant-in-Aid for Encouragement of Young Scientists by the Ministry of Education of Japan; no. 374222 in 1978.  相似文献   
130.
The maximum leaf surface temperatures (MLSTs) of 126 species of higher plants were measured by means of an infrared thermometer, in the Inland Sea area, southwest of Honshu-Island, Japan, where plants suffered from severe environmental conditions due to an abnormally small amount of precipitation during the summer of 1978. The MLSTs of plants in the summer of 1978 were greater than or equal to those of 1979, when the environmental conditions were not so severe. The MLST measured in this study was 50.4 C for a non-succulent plant (Liriodendron), and 53.1 C for a succulent plant (Agave). Plants with different life forms appeared to have different MLSTs. The average of the MLSTs of conifers deciduous trees, and evergreens were 36.4, 37.7, and 40.3 C, respectively. This order corresponds to the distribution of forests from high to low, latitudes. Also the MLSTs were higher for woody plants than for herbaceous plants. Relatively high leaf temperatures were observed for climbing plants, both herbaceous and woody. Plants with narrow leaves had lower leaf surface temperatures than those with borad leaves. Herbaceous dicotyledonous plants actively growing at the end of the summer of 1978, in full sun at Hiroshima Castle were exclusively those with relatively high leaf temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号