首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2719篇
  免费   189篇
  国内免费   213篇
  2024年   9篇
  2023年   19篇
  2022年   30篇
  2021年   48篇
  2020年   39篇
  2019年   45篇
  2018年   73篇
  2017年   59篇
  2016年   55篇
  2015年   67篇
  2014年   95篇
  2013年   121篇
  2012年   68篇
  2011年   102篇
  2010年   90篇
  2009年   171篇
  2008年   152篇
  2007年   175篇
  2006年   169篇
  2005年   143篇
  2004年   108篇
  2003年   96篇
  2002年   68篇
  2001年   51篇
  2000年   72篇
  1999年   80篇
  1998年   79篇
  1997年   75篇
  1996年   62篇
  1995年   49篇
  1994年   63篇
  1993年   62篇
  1992年   60篇
  1991年   59篇
  1990年   50篇
  1989年   41篇
  1988年   49篇
  1987年   38篇
  1986年   30篇
  1985年   32篇
  1984年   36篇
  1983年   15篇
  1982年   25篇
  1981年   30篇
  1980年   23篇
  1979年   17篇
  1978年   7篇
  1977年   8篇
  1974年   3篇
  1973年   1篇
排序方式: 共有3121条查询结果,搜索用时 46 毫秒
991.
The oxidation kinetics under far-red light (FRL) of photosystem I (PSI) high potential donors P700, plastocyanin (PC), and cytochrome f (Cyt f) were investigated in sunflower leaves with the help of a new high-sensitivity photometer at 810 nm. The slopes of the 810 nm signal were measured immediately before and after FRL was turned on or off. The same derivatives (slopes) were calculated from a mathematical model based on redox equilibrium between P700, PC and Cyt f and the parameters of the model were varied to fit the model to the measurements. Typical best-fit pool sizes were 1.0–1.5 μmol m−2 of P700, 3 PC/P700 and 1 Cyt f/P700, apparent equilibrium constants were 15 between P700 and PC and 3 between PC and Cyt f. Cyclic electron flow (CET) was calculated from the slope of the signal after FRL was turned off. CET activated as soon as electrons accumulated on the PSI acceptor side. The quantum yield of CET was close to unity. Consequently, all PSI in the leaf were able to perform in cycle, questioning the model of compartmentation of photosynthetic functions between the stroma and grana thylakoids. The induction of CET was very fast, showing that it was directly redox-controlled. After longer dark exposures CET dominated, because linear e transport was temporarily hindered by the dark inactivation of ferredoxin-NADP reductase.  相似文献   
992.
Phytodecta fornicata Brüggemann is a serious pest of alfalfa (Medicago sativa L.) that causes significant crop loss in the Balkan peninsula of Europe. We introduced a wound-inducible oryzacystatin II (OCII) gene to alfalfa to evaluate its effect on survival of P. fornicata larvae. Feeding bioassays with second, third and fourth instars were carried out using transgenic plants that were shown to express OCII at 24 and 48 h after wounding. Second and third instars were the most sensitive to the ingestion of OCII, whereas no effects were observed with fourth instars. About 80% of the second and third instars died after 2 days of feeding on the transgenic plants as compared to 0–40% on the controls. This is the first report that demonstrates significant increase in mortality of P. fornicata on transgenic plants that express a cysteine proteinase inhibitor gene, and this knowledge should lead to the development of effective management strategies for this devastating pest of alfalfa.  相似文献   
993.
Brassica napus L. seedlings responded to low red to far-red (R/FR) ratio by elongating petioles and decreasing leaf expansion. These typical shade avoidance traits were correlated with significantly decreased endogenous indole-3-acetic acid (IAA) levels and significantly increased endogenous abscisic acid (ABA) levels and ethylene production. The transgenic (T) B. napus line bearing the bacterial ACC deaminase gene, did not respond to low R/FR ratio with altered petiole and leaf growth and less ethylene (especially by petioles) was produced. As with WT seedlings, T seedlings had significantly lower IAA levels in both petioles and leaves under low R/FR ratio. However, ABA levels of low R/FR ratio-grown T seedlings either increased (petioles) or were unaltered (leaves). Our results further suggest that low R/FR ratio regulates endogenous IAA levels independently of ethylene, but there may be an interaction between ABA and ethylene in leaf development.  相似文献   
994.
The shoot apical meristem (SAM) produces lateral organs in a regular spacing (phyllotaxy) and at a regular interval (phyllochron) during the vegetative phase. In a Dissociation (Ds) insertion rice population, we identified a mutant, compact shoot and leafy head 1 (csl1), which produced massive number of leaves (∼70) during the vegetative phase. In csl1, the transition from the vegetative to the reproductive phase was delayed by about 2 months under long-day conditions. With a reduced leaf size and severe dwarfism, csl1 failed to produce a normal panicle after the transition to reproductive growth. Instead, it produced a leafy panicle, in which all primary rachis-branches were converted to vegetative shoots. Phenotypically csl1 resembled pla mutants in short plastochron but was more severe in the conversion of the reproductive organs to vegetative organs. In addition, neither the expression nor the coding region of PLA1 or PLA2 was affected in csl1. csl1 is most likely a dominant mutation because no mutant segregant was observed in progeny of 67 siblings of the csl1 mutant. CSL1 may represent a novel gene, which functions downstream of PLA1 and/or PLA2, or alternatively functions in a separate pathway, involved in the regulation of leaf initiation and developmental transition via plant hormones or other mobile signals.  相似文献   
995.
We tested a mechanical model of wing, which was constructed using the measurements of wingspan and wing area taken from three species of gliding birds. In this model, we estimated the taper factors of the wings for jackdaw (Corrus monedula), Harris’ hawk (Parabuteo unicinctas) and Lagger falcon (Falco jugger) as 1.8, 1.5 and 1.8, respectively. Likewise, by using the data linear regression and curve estimation method, as well as estimating the taper factors and the angle between the humerus and the body, we calculated the relationship between wingspan, wing area and the speed necessary to meet the aerodynamic requirements of sustained flight. In addition, we calculated the relationship between the speed, wing area and wingspan for a specific angle between the humerus and the body over the range of stall speed to maximum speed of gliding flight. We then compared the results for these three species of gliding birds. These comparisons suggest that the aerodynamic characteristics of Harris’ hawk wings are similar to those of the falcon but different from those of the jackdaw. This paper also presents two single equations to estimate the minimum angle between the humerus and the body as well as the minimum span ratio of a bird in gliding flight.  相似文献   
996.
Platelet-activating factor receptor (PAFR) is a member of G-protein coupled receptor (GPCR) superfamily. Understanding the regulation mechanisms of PAFR by its agonists and antagonists at the atomic level is essential for designing PAFR antagonists as drug candidates for treating PAF-mediated diseases. In this study, a 3D model of PAFR was constructed by a hierarchical approach integrating homology modeling, molecular docking and molecular dynamics (MD) simulations. Based on the 3D model, regulation mechanisms of PAFR by agonists and antagonists were investigated via three 8-ns MD simulations on the systems of apo-PAFR, PAFR-PAF and PAFR-GB. The simulations revealed that binding of PAF to PAFR triggers the straightening process of the kinked helix VI, leading to its activated state. In contrast, binding of GB to PAFR locks PAFR in its inactive state.  相似文献   
997.
Seasonal changes in photosynthetic capacity, leaf nitrogen (N) content, leaf chlorophyll (Chl) content and leaf N allocation patterns in leaves of different ages in the evergreen understory shrub, Daphniphyllum humile Maxim, growing at a forest border and an understory site were studied. In current-year leaves at the understory site, the N and Rubisco contents increased from spring to autumn although their light-saturated photosynthetic rate at 22°C (P max22) remained stable, indicating that their mesophyll conductance rates declined as they completed their development and/or that they invested increasing amounts of their resources in photosynthetic enzymes during this period. In contrast, seasonal changes in P max22 in current-year leaves at the forest border site were correlated with changes in Rubisco content. In 1-year old leaves at the understory site, P max22 and contents of Chl, leaf N, and Rubisco remained stable from spring to autumn, while these parameters decreased in 1-year-old forest border leaves, indicating that N may have been remobilized from shaded 1-year-old leaves to sunlit current-year leaves. When leaves senesced at the forest border site the Rubisco content decreased more rapidly than that of light-harvesting proteins such as LHCII, suggesting that N remobilization from Rubisco may be more efficient, possibly because Rubisco has greater N costs and is soluble, whereas the light-harvesting proteins are membrane components.  相似文献   
998.
Three- and four-year-old potted, greenhouse-grown cedar seedlings were subjected to two different watering regimes: half received full water supply and the other half was submitted to moderate drought (50% of the full water supply). Height growth was the greatest for C. atlantica and the most-limited for C. brevifolia in the well-watered set. However, in the dry set, height growth was less affected by drought conditions for C. brevifolia than for C. atlantica. Cedrus libani gave intermediate results for both watering regimes. Moderate drought provoked a decrease in osmotic potential at full leaf turgor and a long-lasting osmotic adjustment. When irrigation was withheld completely to induce severe soil drying, gas exchange decreased and then stopped at predawn water potentials of −3.0 MPa for C. brevifolia, between −2.6 and −2.8 MPa for C. libani, and at −2.4 MPa for C. atlantica, irrespective of watering regime. For all species, the dry set showed lower net photosynthesis (A) and stomatal conductance (g s) than the plants in the well-watered set. A and g s responded to variations in atmospheric water-vapour pressure deficit (VPD). As VPD increased, A and g s decreased, and this trend was proportionate to initial values at low VPD, but remained independent of previous watering treatments, plant water status or species. To conclude, C. brevifolia appears to be a species with limited growth potential but strong soil drought tolerance whereas C. atlantica has strong growth potential when an adequate water supply is available but is more sensitive to soil drought. C. libani shows an intermediate behaviour for growth and drought tolerance.  相似文献   
999.
中国蓼属头状蓼组植物叶表皮微形态及其分类学意义   总被引:2,自引:0,他引:2  
采用光学显微镜对中国蓼属头状蓼组17种7变种植物的叶片下表皮微形态进行了观察研究,结果表明,其叶片下表皮微形态特征分为4种类型:(1)气孔器类型为无规则型,表皮细胞不规则形,垂周壁波状或深波状;(2)非典型不等型,偶有无规则型,表皮细胞多边形或不规则形,垂周壁弓形、波状或深波状;(3)平列型,表皮细胞不规则形,垂周壁深波状;(4)平列型兼有非典型不等型,表皮细胞不规则形,垂周壁波状。根据其叶片下表皮气孔器类型,结合该组植物形态、习性等特征,将中国蓼属头状蓼组植物划分为4个系,即掌裂叶系、多年生系、蓼子草系以及一年生直立系。  相似文献   
1000.
It is widely accepted that PYP undergoes global structural changes during the formation of the biologically active intermediate PYP(M). High-angle solution x-ray scattering experiments were performed using PYP variants that lacked the N-terminal 6-, 15-, or 23-amino-acid residues (T6, T15, and T23, respectively) to clarify these structural changes. The scattering profile of the dark state of intact PYP exhibited two broad peaks in the high-angle region (0.3 A(-1) < Q < 0.8 A(-1)). The intensities and positions of the peaks were systematically changed as a result of the N-terminal truncations. These observations and the agreement between the observed scattering profiles and the calculated profiles based on the crystal structure confirm that the high-angle scattering profiles were caused by intramolecular interference and that the structure of the chromophore-binding domain was not affected by the N-terminal truncations. The profiles of the PYP(M) intermediates of the N-terminally truncated PYP variants were significantly different from the profiles of the dark states of these proteins, indicating that substantial conformational rearrangements occur within the chromophore-binding domain during the formation of PYP(M). By use of molecular fluctuation analysis, structural models of the chromophore-binding region of PYP(M) were constructed to reproduce the observed profile of T23. The structure obtained by averaging 51 potential models revealed the displacement of the loop connecting beta4 and beta5, and the deformation of the alpha4 helix. High-angle x-ray scattering with molecular fluctuation simulation allows us to derive the structural properties of the transient state of a protein in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号