首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7444篇
  免费   499篇
  国内免费   319篇
  2024年   12篇
  2023年   220篇
  2022年   285篇
  2021年   693篇
  2020年   417篇
  2019年   384篇
  2018年   301篇
  2017年   187篇
  2016年   173篇
  2015年   187篇
  2014年   414篇
  2013年   508篇
  2012年   273篇
  2011年   395篇
  2010年   260篇
  2009年   260篇
  2008年   269篇
  2007年   334篇
  2006年   247篇
  2005年   218篇
  2004年   189篇
  2003年   177篇
  2002年   147篇
  2001年   114篇
  2000年   89篇
  1999年   127篇
  1998年   93篇
  1997年   100篇
  1996年   84篇
  1995年   66篇
  1994年   52篇
  1993年   53篇
  1992年   59篇
  1991年   68篇
  1990年   52篇
  1989年   55篇
  1988年   58篇
  1987年   51篇
  1986年   54篇
  1985年   68篇
  1984年   81篇
  1983年   54篇
  1982年   72篇
  1981年   50篇
  1980年   60篇
  1979年   41篇
  1978年   23篇
  1977年   23篇
  1976年   20篇
  1975年   12篇
排序方式: 共有8262条查询结果,搜索用时 15 毫秒
41.
The effects of extracellular K+ concentration ([K+]o) on the pH of cell sap, “bulk cytoplasm” and vacuole have been investigated in Elodea densa leaves under conditions of either low or high activity of the plasmalemma electrogenic H+ pump. Cell sap pH was evaluated directly in the cell sap expressed after freezing and thawing. Cytoplasmic and vacuolar pH were calculated by the weak base and weak acid distribution method, DMO and benzylamine appearing to be a suitable acid and base, respectively, for this purpose in this material. When added to the basal medium (no rapidly permeating ions present), 5 mM K+ induced an increase in intracellular pH, larger for the cell sap and the vacuole (about 0.2 units), and smaller but still significant for the cytoplasm (0.07 units). This alkalinizing effect of K+ was thus associated with a significant decrease in the pH difference across the tonoplast. The alkalinizing effect of K+ was markedly and synergistically enhanced by the presence of fusicoccin, a condition inducing a marked activation of H+ extrusion and of K+ uptake. The correlation between these effects of [K+]o on intracellular pH and those on H+ extrusion indicates that changes in extracellular K+ concentration, and thus in K+ influx, can influence cytoplasmic and vacuolar pH by modulating the rate of H+ extrusion by the plasmalemma H+ pump.  相似文献   
42.
K99 lectin fromEscherichia coli was purified and biotinylated via its carboxyl groups using biocytin hydrazide and a water soluble carbodiimide. Biotinylation of two out of the nine carboxyl groups was sufficient to permit detection of the lectin by avidin and did not cause any loss of the haemagglutinating activity. It was demonstrated that the biotinylated K99 lectin retained other important properties of native K99 and that it will probably become a very sensitive detecting reagent. Indeed, it was able to bind to HeLa cells, as do intact bacteria carrying K99 fimbriae, and also to recognizeN-glycolyl-neuraminyl-lactosyl-ceramide in an overlay binding assay. Abbreviations: NeuAc,N-acetylneuraminic acid; NeuGc,N-glycolylneuraminic acid; PBS, phosphate buffered saline (0.9% NaCl containing 150mm sodium phosphate, pH 7.2); LPS, lipopolysaccharide; BCHZ, biocytin hydrazide; EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; BSA, bovine serum albumin; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; DMEM, Dulbecco's modified Eagle medium. For the gangliosides, trivial names and structures are given according to the recommendations in [43]. NeuAc2-3Gal1-4Glc1-1Cer (NeuAc-GM3); NeuGc2-3Gal1-4Glc1-1Cer (NeuGc-GM3); GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer (GM2); NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer (GD3); Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer (GM1); NeuAc2-3Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc1-1Cer (GD1a); Gal1-3GalNAc1-4(NeuAc2-8NeuAc2-3)Gal1-4Gle1-1Cer (GD1b); NeuAc2-3Gal1-3GalNAc1-4(NeuAc2-8NeuAc2-3) Gal1.-4Glc1-1Cer (GT1b). NeuGc2-3Gal1-4GleNAc1-4Gal1-4Glc1-1Cer (NeuGc-SPG).  相似文献   
43.
Summary Sporobolus virginicus (L.) Kunth is a halophytic grass native to tropical and warm temperate coasts throughout the world. A rhizomatous perennial with erect culms,S. virginicus occurs as two genetically distinct growth forms, which are designated by their characteristic habitats as marsh and dune. What accounts for the specific distribution and maintenance of two separate ecotypes ofS. virginicus is not known. The present study examined the effects of seawater salinity on several morphological and physiological responses of hydroponically cultivated marsh and dune plants to determine whether differential tolerance to substrate salinity might contribute to the observed pattern of habitation. Both marsh and dune form plants survived prolonged exposure to full-strength seawater and reproduced vegetatively via culms and rhizomes. Salinity-induced reductions in culm height, internode length, and leaf size led to a miniaturization of marsh and dune plants. Sodium ion levels were low (<1.0 mmol/g dry weight) in various organs of salinized plants irrespective of ecotype, and potassium ion content increased in all salt-challenged plants, as did quarternary ammonium compounds and proline. Significant differences, however, between marsh and dune plants with respect to the effects of salinity on resource allocation, flowering phenology, and protein composition suggested that external salt concentration has a role in determining ecotype distribution.  相似文献   
44.
45.
Summary An inhibitory activity to (Na,K)ATPase was found in cell extracts of the brine shrimp, Artemia salina, irrespective of its developmental stages. Organic solvent extraction together with gas chromatographic analysis reveals that the inhibitory activity is due to long-chain, non-esterified fatty acids and their derivatives. Unsaturated fatty acids, especially with cis-configuration, are more effective in inhibition than saturated ones.Abbreviations ATPase adenosine triphosphatase - EDTA ethylenediamine-tetraacetate - TLC thin-layer chromatography  相似文献   
46.
Summary Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional31P and19F probes of intracellular pH (pH c ) were found to be impracticable. Cells were therefore superfused with 1 to 4mm 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pH c on external Na+ concentration (c Na o ). pH c also depended on intracellular Na+ concentration (c Na o ). Increasingc Na c by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducingc Na o produced a larger acid shift in pH c than with external K+ present. Comparison of separate preparations indicated that pH c was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pH c of Swiss mouse 3T3 cells using31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.  相似文献   
47.
Summary The gap junction morphology was quantified in freeze-fracture replicas prepared from rat auricles that had been either quickly frozen at 6 K or chemically fixed by glutaraldehyde, in a state of normal cell-to-cell conduction or in a state of electrical uncoupling. The general appearance of the gap junctions was similar after both preparative procedures. A quantitative analysis of three gap junctional dimensions provided the following measurements in the quickly frozen conducting auricles (mean±sd): (a) P-face particles' diameter 8.27±0.74 nm (n =5709), (b) P-face particles' center-to-center distance 10.78±2.12 nm (n=4800), and (c) E-face pits' distance 9.99±2.19 nm (n=1600). Corresponding values obtained from chemically fixed tissues were decreased by about 3% for the particle's diameter and about 5% for the particles' and pits' distances. Electrical uncoupling by the action of either 1 mM 2–4-dinitrophenol (DNP), or 3.5 mMn-Heptan-1-ol (heptanol), induced a decrease of the particle's diameter, which amounted to –0.69±0.01 nm (mean ±se) in the quickly frozen preparations and –0.71±0.01 nm in the chemically fixed ones. The particles' distance was decreased by –0.96±0.04 nm in the quickly frozen samples and by –0.90 ±0.03 nm in the chemically fixed ones and the E-face pits' distance was similarly reduced. All differences were statistically significant (P<0.001 for all dimensions). Electrical recoupling after the heptanol effect promoted a return of these gap junctional dimensions towards normal values, which was about 50% complete within 20 min. It is concluded that very similar morphological alterations of the gap junctional structure are induced in the mammalian heart by different treatments promoting electrical uncoupling and that these conformational changes appear independently of the preparative procedure. The suggestion that the observed decrease of the particles' diameter is genuinely related to the closing mechanism of the unit cell-to-cell channel set in thei centers is thus confirmed.  相似文献   
48.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   
49.
The spontaneous release of [3H] gamma-aminobutyric acid ([3H]GABA) in various areas of rat brain injected with [3H]putrescine was examined using a push-pull perfusion technique. The release in a 25-min perfusate was highest in the caudate-putamen. The effect of high K+ stimulation on the release of [3H]GABA formed from [3H]putrescine was examined in the caudate-putamen. The release was enhanced by high K+ solution in a Ca2+-dependent manner.  相似文献   
50.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号