首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6162篇
  免费   1085篇
  国内免费   2326篇
  2024年   17篇
  2023年   256篇
  2022年   271篇
  2021年   426篇
  2020年   443篇
  2019年   597篇
  2018年   445篇
  2017年   441篇
  2016年   407篇
  2015年   360篇
  2014年   433篇
  2013年   473篇
  2012年   305篇
  2011年   374篇
  2010年   286篇
  2009年   433篇
  2008年   369篇
  2007年   410篇
  2006年   410篇
  2005年   330篇
  2004年   222篇
  2003年   243篇
  2002年   213篇
  2001年   171篇
  2000年   196篇
  1999年   148篇
  1998年   121篇
  1997年   90篇
  1996年   83篇
  1995年   76篇
  1994年   83篇
  1993年   64篇
  1992年   52篇
  1991年   45篇
  1990年   48篇
  1989年   40篇
  1988年   24篇
  1987年   31篇
  1986年   28篇
  1985年   27篇
  1984年   14篇
  1983年   7篇
  1982年   20篇
  1981年   7篇
  1980年   8篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1975年   3篇
  1958年   4篇
排序方式: 共有9573条查询结果,搜索用时 31 毫秒
951.
A wide range of plant lines has been propagated by farmers during crop selection and dissemination, but consequences of this crop diversification on plant-microbe interactions have been neglected. Our hypothesis was that crop evolutionary history shaped the way the resulting lines interact with soil bacteria in their rhizospheres. Here, the significance of maize diversification as a factor influencing selection of soil bacteria by seedling roots was assessed by comparing rhizobacterial community composition of inbred lines representing the five main genetic groups of maize, cultivated in a same European soil. Rhizobacterial community composition of 21-day-old seedlings was analysed using a 16S rRNA taxonomic microarray targeting 19 bacterial phyla. Rhizobacterial community composition of inbred lines depended on the maize genetic group. Differences were largely due to the prevalence of certain Betaproteobacteria and especially Burkholderia, as confirmed by quantitative PCR and cloning/sequencing. However, these differences in bacterial root colonization did not correlate with plant microsatellite genetic distances between maize genetic groups or individual lines. Therefore, the genetic structure of maize that arose during crop diversification (resulting in five main groups), but not the extent of maize diversification itself (as determined by maize genetic distances), was a significant factor shaping rhizobacterial community composition of seedlings.  相似文献   
952.
Mosquitoes transmit numerous arboviruses including dengue and chikungunya virus (CHIKV). In recent years, mosquito species Aedes albopictus has expanded in the Indian Ocean region and was the principal vector of chikungunya outbreaks in La Reunion and neighbouring islands in 2005 and 2006. Vector‐associated bacteria have recently been found to interact with transmitted pathogens. For instance, Wolbachia modulates the replication of viruses or parasites. However, there has been no systematic evaluation of the diversity of the entire bacterial populations within mosquito individuals particularly in relation to virus invasion. Here, we investigated the effect of CHIKV infection on the whole bacterial community of Ae. albopictus. Taxonomic microarrays and quantitative PCR showed that members of Alpha‐ and Gammaproteobacteria phyla, as well as Bacteroidetes, responded to CHIKV infection. The abundance of bacteria from the Enterobacteriaceae family increased with CHIKV infection, whereas the abundance of known insect endosymbionts like Wolbachia and Blattabacterium decreased. Our results clearly link the pathogen propagation with changes in the dynamics of the bacterial community, suggesting that cooperation or competition occurs within the host, which may in turn affect the mosquito traits like vector competence.  相似文献   
953.
Diet strongly influences the intestinal microbial communities through species sorting. Alternatively, these communicates may differ because of chance variation in local microbial exposures or species losses among allopatric host populations (i.e. ecological drift). We investigated how these forces shape enteric communities of Galápagos marine and land iguanas. Geographically proximate populations shared more similar communities within a host ecotype, suggesting a role for ecological drift during host colonization of the islands. Additionally, evidence of taxa sharing between proximate heterospecific host populations suggests that contemporary local exposures also influence the gut community assembly. While selective forces such as host-bacterial interactions or dietary differences are dominant drivers of intestinal community differences among hosts, historical and contemporary processes of ecological drift may lead to differences in bacterial composition within a host species. Whether such differences in community structure translate into geographic variation in benefits derived from these intimate microbial communities remains to be explored.  相似文献   
954.
In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.  相似文献   
955.
Following the repeal in 1962 of a long-standing ban on trawling, yields of demersal fish from the Firth of Clyde, southwest Scotland, increased to a maximum in 1973 and then declined until the directed fishery effectively ceased in the early 2000s. Since then, the only landings of demersal fish from the Firth have been by-catch in the Norway lobster fishery. We analysed changes in biomass density, species diversity and length structure of the demersal fish community between 1927 and 2009 from scientific trawl surveys, and related these to the fishery harvesting rate. As yields collapsed, the community transformed from a state in which biomass was distributed across numerous species (high species evenness) and large maximum length taxa were common, to one in which 90 per cent of the biomass was vested in one species (whiting), and both large individuals and large maximum length species were rare. Species evenness recovered quickly once the directed fishery ceased, but 10 years later, the community was still deficient in large individuals. The changes partly reflected events at a larger regional scale but were more extreme. The lag in response with respect to fishing has implications for attempts at managing a restoration of the ecosystem.  相似文献   
956.
Explaining the origin and maintenance of biodiversity is critical for understanding the potential consequences of present-day environmental change on ecological communities, as well as the evolutionary history of ecosystems in the Earth's past. Much effort in theoretical ecology has focused on identifying mechanisms that promote stable coexistence of species at equilibrium. However, in a consumer-resource model of competition along an environmental gradient, high-diversity assemblages have the potential to persist in non-equilibrium states for millions of generations with very little species loss. Species' populations in such competitively accommodated communities show slow drift; if disrupted, they rapidly reorganize into alternative persistent states. Fossil examples of prolonged ecological stability lasting 1-5 Myr punctuated by rapid reorganization (e.g. brachiopods from the Permian Reef of west Texas) suggest that some palaeocommunities represent a record of periodically disrupted transient states rather than stable equilibria. The similarity between the theoretical results reported here and palaeontological data suggests that the maintenance of high-diversity communities, both in the past and present, may reflect long-duration, non-equilibrium transient dynamics. If so, this has implications for the response of such communities to present-day environmental change, as well as for the evolution of lineages in such systems.  相似文献   
957.
Though Pleistocene refugia are frequently cited as drivers of species diversification, comparisons of molecular divergence among sister species typically indicate a continuum of divergence times from the Late Miocene, rather than a clear pulse of speciation events at the Last Glacial Maximum. Community-scale inference methods that explicitly test for multiple vicariance events, and account for differences in ancestral effective population size and gene flow, are well suited for detecting heterogeneity of species' responses to past climate fluctuations. We apply this approach to multi-locus sequence data from five co-distributed frog species endemic to the Wet Tropics rainforests of northeast Australia. Our results demonstrate at least two episodes of vicariance owing to climate-driven forest contractions: one in the Early Pleistocene and the other considerably older. Understanding how repeated cycles of rainforest contraction and expansion differentially affected lineage divergence among co-distributed species provides a framework for identifying evolutionary processes that underlie population divergence and speciation.  相似文献   
958.
Microbes typically live in communities. The spatial organization of cells within a community is believed to impact the survival and function of the community1. Optical sectioning techniques, including confocal and two-photon microscopy, have proven useful for observing spatial organization of bacterial and archaeal communities2,3. A combination of confocal imaging and physical sectioning of yeast colonies has revealed internal organization of cells4. However, direct optical sectioning using confocal or two-photon microscopy has been only able to reach a few cell layers deep into yeast colonies. This limitation is likely because of strong scattering of light from yeast cells4.Here, we present a method based on fixing and cryosectioning to obtain spatial distribution of fluorescent cells within Saccharomyces cerevisiae communities. We use methanol as the fixative agent to preserve the spatial distribution of cells. Fixed communities are infiltrated with OCT compound, frozen, and cryosectioned in a cryostat. Fluorescence imaging of the sections reveals the internal organization of fluorescent cells within the community.Examples of yeast communities consisting of strains expressing red and green fluorescent proteins demonstrate the potentials of the cryosectioning method to reveal the spatial distribution of fluorescent cells as well as that of gene expression within yeast colonies2,3. Even though our focus has been on Saccharomyces cerevisiae communities, the same method can potentially be applied to examine other microbial communities.  相似文献   
959.
Many arid grassland communities are changing from grass dominance to shrub dominance, but the mechanisms involved in this conversion process are not completely understood. Aeolian processes likely contribute to this conversion from grassland to shrubland. The purpose of this research is to provide information regarding how vegetation changes occur in an arid grassland as a result of aeolian sediment transport. The experimental design included three treatment blocks, each with a 25 × 50 m area where all grasses, semi-shrubs, and perennial forbs were hand removed, a 25 × 50 m control area with no manipulation of vegetation cover, and two 10 × 25 m plots immediately downwind of the grass-removal and control areas in the prevailing wind direction, 19° north of east, for measuring vegetation cover. Aeolian sediment flux, soil nutrients, and soil seed bank were monitored on each treatment area and downwind plot. Grass and shrub cover were measured on each grass-removal, control, and downwind plot along continuous line transects as well as on 5 × 10 m subplots within each downwind area over four years following grass removal. On grass-removal areas, sediment flux increased significantly, soil nutrients and seed bank were depleted, and Prosopis glandulosa shrub cover increased compared to controls. Additionally, differential changes for grass and shrub cover were observed for plots downwind of vegetation-removal and control areas. Grass cover on plots downwind of vegetation-removal areas decreased over time (2004-2007) despite above average rainfall throughout the period of observation, while grass cover increased downwind of control areas; P. glandulosa cover increased on plots downwind of vegetation-removal areas, while decreasing on plots downwind of control areas. The relationships between vegetation changes and aeolian sediment flux were significant and were best described by a logarithmic function, with decreases in grass cover and increases in shrub cover occurring with small increases in aeolian sediment flux.  相似文献   
960.
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2–10 °C for 2–14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week‐long extreme winter warming events – using infrared heating lamps, alone or with soil warming cables – for two consecutive years in a sub‐Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze‐thaw cycles were 2–11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community‐weighted vertical stratification shift occurred from smaller soil dwelling (eu‐edaphic) Collembola species dominance to larger litter dwelling (hemi‐edaphic) species dominance in the canopy‐with‐soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu‐edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro‐flora affecting plant productivity and mineralization rates. Short‐term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号