首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3668篇
  免费   165篇
  国内免费   366篇
  2023年   33篇
  2022年   34篇
  2021年   66篇
  2020年   71篇
  2019年   89篇
  2018年   87篇
  2017年   66篇
  2016年   67篇
  2015年   122篇
  2014年   186篇
  2013年   232篇
  2012年   213篇
  2011年   279篇
  2010年   199篇
  2009年   156篇
  2008年   171篇
  2007年   184篇
  2006年   164篇
  2005年   142篇
  2004年   115篇
  2003年   125篇
  2002年   101篇
  2001年   90篇
  2000年   68篇
  1999年   83篇
  1998年   71篇
  1997年   75篇
  1996年   70篇
  1995年   66篇
  1994年   78篇
  1993年   66篇
  1992年   52篇
  1991年   53篇
  1990年   44篇
  1989年   37篇
  1988年   36篇
  1987年   47篇
  1986年   38篇
  1985年   46篇
  1984年   60篇
  1983年   34篇
  1982年   42篇
  1981年   39篇
  1980年   34篇
  1979年   25篇
  1978年   12篇
  1977年   13篇
  1976年   6篇
  1975年   3篇
  1972年   4篇
排序方式: 共有4199条查询结果,搜索用时 15 毫秒
61.
The Na,K-ATPase (sodium pump) plays a central role in the physiology of arthropod photoreceptors as it re-establishes gradients for Na+ and K+ after light stimulation. We have mapped the distribution of the Na,K-ATPase in the photoreceptors of the blowfly (Calliphora erythrocephala) by immunofluorescent and immunogold cytochemistry, and demonstrate that the distribution pattern is more complex than previously presumed. High levels of sodium pumps have been detected consistently in all photoreceptors R1-8 on the nonreceptive surface, but no sodium pumps are found on the microvillar rhabdomere. Within the nonreceptive surface of the cells R1-6, however, the sodium pumps are confined to sites juxtaposed to neighboring photoreceptor or glial cells; no sodium pumps have been detected on the parts of the nonreceptive surface exposed to the intra-ommatidial space. In R7 and R8, the sodium pumps are found over the entire nonreceptive surface. The cytoskeletal protein spectrin colocalizes with the sodium pumps suggesting that linkage of the pump molecules to the spectrin-based submembrane cytoskeleton contributes to the maintenance of the complex pattern of pump distribution.  相似文献   
62.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   
63.
Claudia Kluge  Peter Dimroth   《FEBS letters》1994,340(3):245-248
Subunit c of the F1F0-ATPase from Propionigenium modestum was extracted from the particulate cell fraction with chloroform/methanol. The protein was further purified by carboxymethyl cellulose chromatography and anion exchange HPLC in the organic solvent. SDS-PAGE of the purified protein indicated a single stained protein band migrating as expected for the c-subunit. Incubation of isolated subunit c in chlorform/methanol or aqueous buffer containing dodecyl-β- -maltoside with [14C]dicyclohexylcarbodiimide (DCCD) resulted in the incorporation of radioactivity into the protein. The rate of this reaction depended on the external pH; it was significantly faster in the more acidic than in the alkaline pH range. In the presence of Na+ subunit c was partially protected from labeling with [14C]DCCD at pH 6.1 and at pH 7.5, whereas no protection was evident at pH 5.5. At pH 7.5, the rate of subunit c labeling by [14C]DCCD in the presence of 20 mM NaCl was about 50% lower than in the absence of Na+ ions. The isolated c-subunit therefore apparently retains in part the Na+ binding site which, when occupied, diminishes the reactivity of the protein towards DCCD.  相似文献   
64.
《FEBS letters》1994,350(2-3):155-158
While many ion channels are modulated by phosphorylation, there is growing evidence that they can also be regulated by Ca2+-calmodulin, apparently through direct binding. In some cases, this binding activates channels; in others, it modulates channel activities. These phenomena have been documented in Paramecium, in Drosophila, in vertebrate photoreceptors and olfactory receptors, as well as in ryanodine receptor Ca2+-release channels. Furthermore, studies on calmodulin mutants in Paramecium have shown a clear bipartite distribution of two groups of mutations in the calmodulin gene that lead to opposite behavioral and electrophysiological phenotypes. These results indicate that the N-lobe of calmodulin specifically interacts with one class of ion-channel proteins and the C-lobe with another.  相似文献   
65.
The expression of rat brain voltage-sensitive Na+ channel mRNAs in Schwann cells was examined using in situ hybridization cytochemistry and RT-PCR. The mRNAs of rat brain Na+ channel subtype II and III, but not subtype I, were detected in cultured Schwann cells from sciatic nerve and in intact sciatic nerve, which contains Schwann cells but not neuronal cell bodies. These results indicate that rat brain Na+ channel mRNAs, which have been considered as mainly neuronal-type messages, are also expressed in glial cells in vitro and in vivo.  相似文献   
66.
Cl conductance in cultured embryonic chick cardiac myocytes was characterized using whole-cell patch clamp techniques. Following elimination of cation currents in Na+and K+-free internal and external solutions, the basal whole-cell current was predominantly a Cl current. Cl-sensitive current (I Cl) was defined as the difference between the whole-cell currents recorded in normal and low [Cl] o when measured in the same cell. The whole-cell current in the absence or presence of 10 m cAMP was time independent, displayed outward rectification with the pipette [Cl] < 40 mm, and was not saturated with a physiological Cl gradient. The Cl current was also activated by 1 m forskolin and inhibited by 0.3 mm anthracene-9-carboxylic acid (9-AC). Forskolin was less effective than cAMP (internal dialysis) in activating the Cl current. The cAMP- or forskolin-activated and basal Cl current were reasonably fit by the Goldman-Hodgkin-Katz equation. The calculated P Cl in the presence of cAMP was increased by fiveto sixfold over the basal level. In the presence of 5 mm EGTA to decrease free [Ca2+] i , the whole-cell current could not be stimulated by cAMP, forskolin or IBMX (0.1 mm). These data suggest that cultured chick cardiac myocytes have a low basal Cl conductance, which, as in some mammalian cardiac ventricular myocytes, can be activated by cAMP. However, this study shows that the activation process requires physiological free [Ca2+] i .This study was supported by grants from the National Institutes of Health (HL-17670, HL-27105 and HL-07107) for M.L. and by Institutional funds of the University of Arkansas for Medical Sciences for S.L.We thank Meei-Yueh Liu, Kathleen Mitchell, and Shirley Revels for their technical assistance.  相似文献   
67.
68.
The ability of 2-n-propyl-4-pentenoic acid (Δ4-VPA) and 2-n-propyl-2(E)-pentenoic acid ([E]-Δ2-VPA), two unsaturated metabolites of valproic acid (VPA), to form reactive intermediates, deplete hepatic glutathione (GSH) and cause accumulation of liver triglycerides was investigated in the rat. With the aid of ionspray liquid chromatography-tandem mass spectrometry (LC-MS/MS), three GSH adducts were detected in the bile of Δ4-VPA-treated animals and were identified as 4-hydroxy-5-glutathion-S-yl-VPA-γ-lactone, 5-glutathion-S-yl-(E)-Δ3-VPA and 3-oxo-5-glutathion-S-yl-VPA. A fourth conjugate was identified tentatively as 4-glutathion-S-yl-5-hydroxy-VPA. Quantitative analysis of the corresponding N-acetylcysteine (NAC) conjugates in urine indicated that metabolism of Δ4-VPA via the GSH-dependent pathways accounted for approximately 20% of an acute dose (100 mg kg−1 i.p.). In contrast, when rats were given an equivalent dose of (E)-Δ2-VPA, only one GSH adduct (5-glutathion-S-yl-(E)-Δ3-VPA) was detected at low concentrations in bile. In vitro experiments with rat liver mitochondria demonstrated that Δ4-VPA undergoes coenzyme A- and ATP-dependent metabolic activation in this organelle via the β-oxidation pathway to intermediates which bind covalently to proteins. When liver homogenates and hepatic mitochondria from rats injected with Δ4-VPA, (E)-Δ2-VPA or VPA were analyzed for GSH content, it was found that only Δ4-VPA depleted GSH pools significantly. Treatment of rats with Δ4-VPA and (to a lesser extent) VPA led to an accumulation of liver triglycerides, whereas (E)-Δ2-VPA had no measurable effect. It is concluded that Δ4-VPA undergoes metabolic activation by both microsomal cytochrome P-450-dependent and mitochondrial coenzyme A-dependent processes, and that the resulting electrophilic intermediates, which are trapped in part by GSH, may mediate the hepatotoxic effects of this compound. In contrast, (E)-Δ2-VPA is not transformed to any appreciable extent to reactive metabolites, which thus accounts for the apparent lack of hepatotoxicity of this positional isomer in the rat.  相似文献   
69.
Abstract: Glucocorticoids (GCs) are secreted during stress and can damage the hippocampus over the course of aging and impair the capacity of hippocampal neurons to survive excitotoxic insults. Using microdialysis, we have previously observed that GCs augment the extracellular accumulation of glutamate and aspartate in the hippocampus following kainic acid-induced seizures. In that study, adrenalectomized rats maintained on minimal GC concentrations were compared with those exposed to GCs elevated to near-pharmacological levels. We wished to gain insight into the physiological relevance of these observations. Thus, we have examined the effects of GCs over the normal physiological range on glutamate and aspartate profiles; this was done by implanting adrenalectomized rats with GC-secreting pellets, which produce stable and controllable circulating GC concentrations. We observe that incremental increases in GC concentrations cause incremental increases in glutamate accumulation before the kainic acid insult, as well as in the magnitude of the glutamate response to kainic acid. Elevating GC concentrations from the circadian trough to peak doubled cumulative glutamate accumulation, whereas a rise into the stress range caused a fourfold increase in accumulation. Similar, although smaller, effects also occurred with aspartate accumulation (as well as with taurine but not glutamine accumulation). These data show that the highly elevated GC concentrations that accompany neurological insults such as seizure or hypoxia-ischemia will greatly exacerbate the glutamate accumulation at that time. Furthermore, stress levels of GCs augmented glutamate accumulation even in the absence of an excitotoxic insult, perhaps explaining how sustained stress itself damages the hippocampus. Finally, even the moderately ?levated basal GC concentrations that typically occur in aged rats augmented glutamate accumulation, perhaps explaining how GCs damage the hippocampus over the course of normal aging.  相似文献   
70.
In this work, we tested the effect of ion channel blockers and of phorbol ester treatments on [3H]dopamine ([3H]DA) release and neurotensin (NT)-induced facilitation of [3H]DA release from cultures of rat fetal mesencephalic cells. The potassium channel blockers tetraethylammonium and 4-aminopyridine increased basal [3H]DA release and decreased K+-evoked [3H]DA release, whereas apamin was without effect. K+-evoked [3H]DA release was decreased by ω-conotoxin and nifedipine, totally suppressed by cadmium, and unaffected by amiloride. These results show the differential sensitivity of [3H]DA release to blockade of various ion channels and suggest the involvement of N-type, L-type, and non-L-non-N-type, but not T-type, voltage-sensitive calcium channels in K+-evoked release. Phorbol 12-myristate 13-acetate increased both spontaneous and K+-evoked [3H]DA release, suggesting a modulatory action of protein kinase C on DA release in this system. Unexpectedly, however, the effects of the phorbol ester were not counteracted by the protein kinase C inhibitors H7, staurosporine, or polymyxin B. NT-induced facilitation of K+-evoked [3H]DA release was insensitive to most of the ion channel blockers, except cadmium (64% decrease in NT effect), suggesting that the corresponding potassium' and calcium channels were not involved in the effect of NT on [3H]DA release in this system. The NT effect was totally suppressed by phorbol ester treatments, indicating a possible desensitization of the corresponding transduction mechanisms after protein kinase C activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号