首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3663篇
  免费   165篇
  国内免费   366篇
  2023年   33篇
  2022年   34篇
  2021年   66篇
  2020年   71篇
  2019年   89篇
  2018年   87篇
  2017年   66篇
  2016年   67篇
  2015年   122篇
  2014年   186篇
  2013年   232篇
  2012年   213篇
  2011年   279篇
  2010年   199篇
  2009年   156篇
  2008年   171篇
  2007年   184篇
  2006年   164篇
  2005年   142篇
  2004年   115篇
  2003年   125篇
  2002年   101篇
  2001年   90篇
  2000年   68篇
  1999年   83篇
  1998年   71篇
  1997年   75篇
  1996年   66篇
  1995年   66篇
  1994年   78篇
  1993年   66篇
  1992年   52篇
  1991年   53篇
  1990年   44篇
  1989年   37篇
  1988年   36篇
  1987年   47篇
  1986年   38篇
  1985年   46篇
  1984年   60篇
  1983年   34篇
  1982年   42篇
  1981年   39篇
  1980年   34篇
  1979年   25篇
  1978年   12篇
  1977年   13篇
  1976年   6篇
  1975年   3篇
  1972年   4篇
排序方式: 共有4194条查询结果,搜索用时 203 毫秒
21.
Schönbohm, E., Stute, U., Thienhaus, P. and Werner, U. 1988. The stimulating effect of a cold, dark pretreatment on the etioplast/chloroplast transformation of angiosperms I. The stimulating effect of cold predarkening on different stages of greening under white light. - Physiol. Plant. 72: 541–546.
The etioplast/chloroplast transformation in angiosperms is controlled by light; most of the processes are mediated by phytochrome. We have shown that in the primary leaves of etiolated seedlings of wheat ( Triticum aestivum L. cv. Kolibri), fire-bean ( Phaseolus multiflorus L. cv. Preisgewinner) and in the cotyledons of etiolated sun flower seedlings ( Helianthus annuus L. cv. macrocarpa) the chlorophyll accumulation in the phase after the end of the lag phase can be greatly stimulated by a cold predarkening period. This effect is not necessarily coupled with a red preirradiation. Furthermore the lag phase can be dramatically shortened by the cold, dark pretreatment, whereas the amount of photoconvertible protochlorophyll(ide) in the darkness remains unaffected by the cold, dark pretreatment. The stimulating effect of a cold, predarkening period on greening is fully reversible by a warm, dark phase that is placed between the cold period and the onset of the continuous white light phase. These findings cannot be generalized: We could demonstrate that in the tropical plant Momordica charantia greening under white light was not affected by different temperature pretreatments during predarkening. The stimulating effect of a cold, predarkening period on greening is assumed to have ecological relevance.  相似文献   
22.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   
23.
Summary The water relations parameters and the osmoregulatory response ofEremosphaera viridis were investigated both by using the pressure probe technique and by analyzing the intracellular pool of osmotically active agents. In the presence of various concentrations of different salts a biphasic osmoregulatory response was recorded, consisting of a rapid decrease in turgor pressure due to water loss followed by an increase in turgor pressure to the original turgor pressure value (depending on the salt). The values of turgor pressure, volumetric elastic modulus and hydraulic conductivity depended on the composition of the media. Nonelectrolytes did not cause a turgor recovery after the initial water efflux. The second phase of turgor regulation in the presence of salts was characterised by the intracellular accumulation of ions and sugars and required at least 24 hr. Analysis of the cell sap showed that the increase in the internal osmotic pressure was mainly achieved by accumulation of sucrose. Additionally, accumulation of glucose was observed in illuminated cells in the presence of Rb and K. Electron micrographs suggested that the sucrose was produced by degradation of starch granules. Turgor pressure recovery after salt stress seemed to be dependent on temperature and is well correlated with the according photosynthetic activity. The data suggest that a temperature-dependent enzyme which is activated by potassium or rubidium is involved in the regulatory response.  相似文献   
24.
Abscisic acid and water transport in sunflowers   总被引:5,自引:0,他引:5  
The role of abscisic acid (ABA) in the transport of water and ions from the root to the shoot of sunflower plants (Helianthus annuus) was investigated by application of ABA either to the root medium or to the apical bud. The exudation at the hypocotyl stump of decapitated seedlings was measured with and without hydrostatic pressure (0–0.3 MPa) applied to the root. All ABA concentrations tested (10-10–10-4 mol·l-1) promoted exudation. Maximal amounts of exudate (200% of control) were obtained with ABA at 10-6·mol·l-1 and an externally applied pressure of 0.1 MPa. The effect was rapid and long-lasting, and involved promotion of ion release to the xylem (during the first hours) as well as an increase in hydraulic conductivity. Abscisic acid applied to the apical bud had effects similar to those of the rootapplied hormone. Increased rates of exudation were also obtained after osmotic stress was applied to the root; this treatment increased the endogenous level of ABA in the root as well as in the shoot. Water potentials of the hypocotyls of intact plants increased when the roots were treated with ABA at 5°C, whereas stomatal resistances were lowered. The results are consistent with the view that ABA controls the water status of the plant not only by regulating stomatal transpiration, but also by regulating the hydraulic conductivity of the root.Abbreviations and symbols ABA abscisic acid - Tv volume flow - Lp hydraulic conductivity - PEG polyethyleneglycol - water potential - osmotic potential - osmotic value - P hydrostatic pressure  相似文献   
25.
Opening and closing of the stomatal pore is associated with very large changes in K-salt accumulation in stomatal guard cells. This review discusses the ionic relations of guard cells in relation to the general pattern of transport processes in plant cells, in plasmalemma and tonoplast, involving primary active transport of protons, proton-linked secondary active transport, and a number of gated ion channels. The evidence available suggests that the initiation of stomatal opening is regulated through the uptake mechanisms, whereas initiation of stomatal closing is regulated by control of ion efflux at the plasmalemma, and of fluxes to and from the vacuole. In response to a closing signal there are large transient increases in efflux of both Cl? (or Br?) and Rb+ (K+) at the plasmalemma, with also a probable increase in anion flux from vacuole to cytoplasm and decrease in anion flux from cytoplasm to vacuole. A speculative hypothetical sequence of events is discussed, by which the primary response to a closing signal is an increase in Ca2+ influx at the plasmalemma, producing depolarisation and increase in cytoplasmic Ca2+. The consequent opening of Ca2+-sensitive Cl? channels, and voltage-sensitive K+ channels (also Ca2+-sensitive?) in the plasmalemma, and of a Ca2+-sensitive nonspecific channel in the tonoplast, could produce the flux effects identified by the tracer work; this speculation is also consistent with the Ca2+-sensitivity of the response to closing signals and with evidence from patch clamping that such channels exist in at least some plant cells, though not yet all shown in guard cells.  相似文献   
26.
Abstract Lipid bilayer experiments were performed with chromosome-encoded haemolysin of Escherichia coli . The addition of the toxin to the aqueous phase bathing lipid bilayer membranes of asolectin resulted in the formation of transient ion-permeable channels with two states at small transmembrane voltages. One is prestate (single-channel conductance 40 pS in 0.15 M KCl) of the open state, which had a single-channel conductance of 420 pS in 0.15 M KCl and a mean lifetime of 30 s. Membranes formed of pure lipids were rather inactive targets for this haemolysin. Experiments with different salts suggested that the haemolysin channel was highly cation-selective at neutral pH. The mobility sequence of the cations in the channel was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with a wide, water-filled channel with an estimated minimal diameter of about 1 nm. The pore-forming properties of chromosome-encoded haemolysin were compared with those of plasmid-encoded haemolysin. Both toxins share common features, oligomerize probably to form pores in lipid bilayer membranes. Both types of haemolysin channels have similar properties but different lifetimes.  相似文献   
27.
The morphological development and N uptake patterns of spring barley (Hordeum vulgare L.) genotypes of Northern European (Nordic) and Pacific Northwest US (PNW) origin were compared under two diurnally fluctuating root temperature regimes in solution culture. The two regimes, 15/5°C and 9/5°C day maximum/night minimum temperatures, simulated soil temperature differences between tilled vs. heavy-residue, no-till conditions, respectively, observed during early spring in eastern Washington. Previous field experiments indicated that some of the Nordic genotypes accumulated more N and dry matter than the PNW cultivars during early spring under no-till conditions. The objective of this experiment was to determined whether these differences 1) are dependent on the temperature of the rooting environment, and 2) are correlated with genotypic differences in NH4 + and NO3 uptake. Overall, shoot N and dry matter accumulation was reduced by 40% due to lower root temperatures during illumination. Leaf emergence was slowed by 14 to 22%, and tiller production was also inhibited. All genotypes absorbed more ammonium than nitrate from equimolar solutions, and the proportion of total N absorbed as NH4 + was slightly higher in the 9/5°C than the 15/5°C regime. A Finnish genotype, HJA80201, accumulated significantly more shoot N than the PNW cultivars, Clark and Steptoe, and also more than a Swedish cultivar, Pernilla, in the 9/5°C regime. In the 15/5°C regime Steptoe did not differ in shoot N from the Nordic genotypes, while Clark remained significantly lower. These differences were not correlated to relative propensity for N form. Root lengths of the Nordic genotypes were significantly greater than the PNW genotypes grown under the 9/5°C regime, while the root lengths in the warmer root temperture regime were not significantly different among genotypes. Higher root elongation rates under low soil temperature conditions may be an inherent adaptive mechanism of the Nordic genotypes. Overall, the data indicate that lower maximum daytime temperatures of the soil surface layer likely account for a significant portion of the growth reductions and lower N uptake observed in no-till systems.  相似文献   
28.
A. Limami  T. Lamaze 《Plant and Soil》1991,138(1):115-121
The lower part (4 cm) of the witloof chicory tap-root (15 cm) was immersed in a complete nutrient solution for 21 days, in the darkness at 18°C and at high RH. This process of forcing which leads to the emergence of an etiolated bud (chicon) was associated with a decrease in root dry weight. Although the amount of calcium in the root and the root cationic exchange capacity remained constant during forcing, the net uptake of calcium, negligible at the onset of forcing, progressively increased to a rate after ten days of 45 mol day–1. Absorption of 45Ca remained at a constant high rate, while the initially low upward migration of 45Ca within the root and the chicon accelerated markedly. This upward migration was associated with a progressive decline in the release of newly absorbed 45Ca. The data support the hypothesis that calcium acquisition by witloof chicory root is predominantly determined by calcium efflux. As the forcing progressed, the influx remained almost constant while a large decrease in the efflux led to a net uptake of calcium. Upward translocation was probably linked to the formation of new negative exchange sites within the growing chicon. The hypothesis that calcium movement occurred along a preferential pathway (xylem vessels) or involved a mass movement through the root is discussed.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号