首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17054篇
  免费   1959篇
  国内免费   3517篇
  2024年   23篇
  2023年   341篇
  2022年   337篇
  2021年   551篇
  2020年   760篇
  2019年   814篇
  2018年   775篇
  2017年   806篇
  2016年   865篇
  2015年   745篇
  2014年   821篇
  2013年   1110篇
  2012年   690篇
  2011年   835篇
  2010年   669篇
  2009年   978篇
  2008年   924篇
  2007年   991篇
  2006年   905篇
  2005年   858篇
  2004年   703篇
  2003年   654篇
  2002年   618篇
  2001年   532篇
  2000年   485篇
  1999年   448篇
  1998年   385篇
  1997年   385篇
  1996年   355篇
  1995年   329篇
  1994年   297篇
  1993年   277篇
  1992年   289篇
  1991年   211篇
  1990年   227篇
  1989年   188篇
  1988年   176篇
  1987年   173篇
  1986年   137篇
  1985年   162篇
  1984年   123篇
  1983年   84篇
  1982年   151篇
  1981年   92篇
  1980年   68篇
  1979年   54篇
  1978年   34篇
  1977年   25篇
  1976年   18篇
  1975年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Abstract An artificial osmotic cell has been constructed using reverse osmosis membranes. The cell consisted of a thin film of an osmotic solution (thickness: 100 to 200 μm) containing a non-permeating solute and was bounded between the membrane and the front plate of a pressure transducer which continuously recorded cell turgor. The membrane was supported by metal grids to withstand positive and negative pressures (P). At maximum, negative pressures of up to –0.7 MPa (absolute) could be created within the film on short-term and pressures of up to –0.3 MPa could be maintained without cavitation for several hours. As with living plant cells, the application of osmotic solutions of a non-permeating solute resulted in monophasic relaxations of turgor pressure from which the hydraulic conductivity of the membrane (Lp) and the elastic modulus of the cell (?) could be estimated. The application of solutions with permeating solutes resulted in biphasic pressure relaxation curves (as for living cells) from which the permeability (Ps) and reflection (σs) coefficients could be evaluated for the given membrane. Lp, Ps, and σs were independent of P and did not change upon transition from the positive to the negative range of pressure. It is concluded that the artificial cell could be used to simulate certain transport properties of living cells and to study phenomena of negative pressure as they occur in the xylem and, perhaps, also in living cells of higher plants.  相似文献   
102.
Abstract. Portulacaria afra (L.) Jacq. is a perennial facultative CAM species showing a seasonal shift from C3 to CAM photosynthesis. The shift to CAM during the summer occurs despite continued irrigation of the plants. The authors examined the hypothesis that the seasonal shift to CAM occurred because of low transient water potentials. They measured changes in whole leaf water, osmotic and pressure potentials over the course of the shift. They also studied changes in enzyme activity to ascertain if PEP carboxylase and PEP carboxykinase were induced during the seasonal shift to CAM. Water potentials were high, from -0.1 to -0.5 MPa, predawn and midday, when the C3 pathway of photosynthesis was utilized. Osmotic potentials were constant, from -0.7 to - 0.8 MPa, indicating very little change in turgor. P. afra shifted to CAM indicated by large diurnal acid fluctuations (300 400 meq m−2) despite C3-like predawn water potentials. Midday water potentials usually decreased 0.2-0.7 MPa, while the osmotic potential remained unchanged or decreased slightly. Thus, a midday loss of turgor was associated with the use of the CAM pathway. The results support the hypothesis that the induction of CAM occurred due to low transient water potentials and may be partially mediated through the loss of turgor. The shift to CAM is only a partial induction with PEP carboxykinase showing high activity all year round while PEP carboxylase increases three-to five-fold over C3 levels. Relatively high levels of CAM enzyme activity enables the utilization of the CAM pathway in the winter and spring in response to high daytime temperatures and increased evaporative demand. These results would lead to an increase in water use efficiency during such periods when compared to other inducible CAM species.  相似文献   
103.
Gas exchange and abscisic acid content of Digitalis lanata EHRH. have been examined at different levels of plant water stress. Net photosynthesis, transpiration and conductance of attached leaves declined rapidly at first, then more slowly following the withholding of irrigation. The intercellular partial pressure of CO2 decreased slightly. The concentration of 2-cis(S)ABA increased about eight-fold in the leaves of non-irrigated plants as compared with well-watered controls. A close linear correlation was found between the ABA content of the leaves and their conductance on a leaf area basis. In contrast, the plot of net assimilation versus ABA concentration was curvilinear, leading to an increased efficiency of water use during stress. After rewatering, photosynthesis reached control values earlier than transpiration, leaf conductance and ABA content. From these data it is concluded that transpiration through the stomata is directly controlled by the ABA content, whereas net photosynthesis is influenced additionally by other factors.Possible reasons for the responses of photosynthesis and water use efficiency to different stress and ABA levels are discussed.Abbreviations A net CO2 assimilation - ABA abscisic acid - Ci intercellular CO2 concentration - g stomatal conductance - T transpiration - WUE water use efficiency  相似文献   
104.
Under well-watered conditions in the laboratory, Sedum pulchellum assimilated CO2 only during the day, yet exhibited small nocturnal increases in tissue acid content followed by deacidification in the light (CAM-cycling). When drought-stressed, little CO2 was fixed in the day and none at night, yet even greater acid fluctuations were observed (CAM-idling). Calculations indicate that water savings associated with CAM-cycling when water is available are small. Water saving is more likely to be significant during CAM-idling when water supply is limited and stomata are closed day and night. Thus, in this species, CAM-idling may be of greater benefit to the plant, relative to CAM-cycling, in surviving habitats prone to frequent drought stress.Abbreviations A CO2 exchange rate - CAM Crassulacean acid metabolism - ci shoot internal CO2 concentration - gc shoot conductance to CO2 - PPFD photosynthetic photon flux density - WUE water-use efficiency Supported by National Science Foundation Grant No. DMB 8506093.  相似文献   
105.
The efficiency of pitfall trapping for polyphagous predatory Carabidae   总被引:2,自引:0,他引:2  
ABSTRACT.
  • 1 The efficiency of pitfall trapping was investigated for seven carabid species, using time-lapse video recording equipment, in the laboratory.
  • 2 The effects of differing substrates, trap designs and seasons of collection on the capture rates of the carabids was also investigated.
  • 3 Capture rate differed significantly between the species studied. The differences in capture rates between the species were unrelated to beetle size, speed of movement and diurnal behaviour.
  • 4 Few differences arose in the capture rates when type of substrate or trap or season of capture were changed.
  相似文献   
106.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
107.
Soon  Y. K. 《Plant and Soil》1988,109(2):171-179
A field study with barley was conducted in 1984 and 1985 to provide data on uptake rates of N, P, K and Mg and their variation as the growing season progressed. Two varieties were grown: Galt in 1984 and Otal in 1985. Soil fertility was maintained at or near optimum conditions. Samples were obtained approximately every 10 days for shoot dry weight, nutrient content and root length measurements. The approximate method (Williams, 1948) traditionally used for calculating uptake rates was found to be invalid for most of the nutrients studied. The method used for measuring uptake rates was the functional approach proposed by Hunt (1973). Inflow,i.e. uptake rate per unit root length, of plant nutrients, decreased with time. However, maximum uptake rates measured in kg ha–1d–1 occurred at about 50 days from sowing because of increasing root length density with time. Inflow or uptake rates were low in 1985 because of moisture deficiency, and grain yield (0.89 t ha–1) was severely depressed. This study demonstrated that Hunt's method is superior and more advantageous than the traditional, approximate method.  相似文献   
108.
Rice cultivar evaluation for phosphorus use efficiency   总被引:12,自引:1,他引:11  
Phosphorus deficiency is one of the most growth-limiting factors in acid soils in various parts of the world. The objective of this study was to screen 25 rice cultivars (Oryza sativa L.) at low, medium, and high levels of soil P. Number of tillers, root length, plant height, root dry weight and shoot dry weight were related to tissue P concentrations, P uptake and P-use efficiency. Shoot weight was found to be the plant parameter most sensitive to P deficiency. Significant cultivar differences in P use efficiency were found. Phosphorus use efficiency was higher in roots than shoots and decreased with increasing levels of soil P. Positive correlations were found among growth parameters such as plant height, tillers, root and shoot weight, and P content of roots and shoots. These results indicate selection of rice cultivars for satisfactory performance under low P availability can be carried out using shoot and root dry weight as criteria.  相似文献   
109.
A soil nitrogen model was used for a 4-year simulation of nitrogen dynamics and nitrate leaching, both during grass ley growth and after ploughing a grass ley. Model results were compared with field measurements of soil mineral-N status and leaching. A soil water and heat model provided daily values for abiotic conditions, which were used as driving variables in the nitrogen simulation. Simulated values for mineral-N levels in the soil agreed well with field data for the first 3 years of the simulation. During the final year the model predicted considerably higher levels of soil mineral-N content compared with measurements. To reach the mineral-N level measured at the time of ploughing the ley, the simulated N-uptake by plants had to be increased by 8 g N m−2. Simulations of nitrate leaching suggested that estimates of leaching based on measurements in tile-drained plots can be considerably underestimated. Accurate quantification of leaching in tile-drained plots often requires additional information on water-flow paths. A substantial increase in simulated and measured values for the mineral-N content of the soil occurred after ploughing the ley. In the simulation, most of the increase was due to a high crop residue input and the absence of a growing crop after ploughing. Litter accumulations in the soil during the 4-year period contributed little to the increase in soil mineral-N.  相似文献   
110.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号