首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2806篇
  免费   466篇
  国内免费   90篇
  2024年   10篇
  2023年   57篇
  2022年   75篇
  2021年   119篇
  2020年   121篇
  2019年   177篇
  2018年   134篇
  2017年   138篇
  2016年   113篇
  2015年   123篇
  2014年   283篇
  2013年   245篇
  2012年   169篇
  2011年   162篇
  2010年   123篇
  2009年   143篇
  2008年   133篇
  2007年   130篇
  2006年   127篇
  2005年   120篇
  2004年   83篇
  2003年   63篇
  2002年   53篇
  2001年   54篇
  2000年   46篇
  1999年   38篇
  1998年   49篇
  1997年   29篇
  1996年   29篇
  1995年   31篇
  1994年   26篇
  1993年   19篇
  1992年   14篇
  1991年   9篇
  1990年   16篇
  1989年   11篇
  1988年   8篇
  1987年   3篇
  1986年   11篇
  1985年   13篇
  1984年   13篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1978年   6篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有3362条查询结果,搜索用时 15 毫秒
41.
R B Waring  R W Davies 《Gene》1984,28(3):277-291
A widespread class of introns is characterized by a particular RNA secondary structure, based upon four conserved nucleotide sequences. Among such "class I" introns are found the majority of introns in fungal mitochondrial genes and the self-splicing intron of the large ribosomal RNA of several species of Tetrahymena. A model of the RNA secondary structure, which must underlie the self-splicing activity, is here evaluated in the light of data on 16 further introns. The main body or "core structure" of the intron always consists of the base-paired regions P3 to P9 with the associated single-stranded loops, with P2 present also in most cases. Two minority sub-classes of core structure occur, one of which is typical of introns in fungal ribosomal RNA. Introns in which the core structure is close to the 5' splice site all have an internal guide sequence (IGS) which can pair with exon sequences adjacent to the 5' and 3' splice sites to align them precisely, as proposed by Davies et al. [Nature 300 (1982) 719-724]. In these cases, the internal guide model allows us to predict correctly the exact location of splice sites. All other introns probably use other mechanisms of alignment. This analysis provides strong support for the RNA splicing model which we have developed.  相似文献   
42.
Summary Endothelia of the anterior cerebral arteries in rats aged 1 to 3 days were studied. Thin (about 50–90 Å) and thick (about 100–110 Å) filaments are present in the endothelia. Numerous spherical- or rod-shaped bodies, measuring approximately 0.07 to 0.3 m in diameter and up to 0.6 m in length occur in the endothelial cells. These bodies contain a tubular structure. The diameter of the individual tubules is about 200 Å. The present observations suggest that spherical- or rod-shaped inclusions are first synthesized in the rough endoplasmic reticulum and thereafter these materials are transported into the Golgi complex for maturation. A small number of the inclusions, however, may originate directly from the rough endoplasmic reticulum and not pass through the Golgi apparatus.A part of this study was demonstrated at the 70th Versammlung der Anatomischen Gesellschaft in Düsseldorf, April, 1–5, 1975The author thanks Mr. Tatsuro Fukushima for preparation of photographs  相似文献   
43.
The molecular control of the distribution and motion of acetylcholine receptors in the plasma membrane of developing rat myotubes in primary cell culture was investigated by fluorescence techniques. Acetylcholine receptors were marked with tetramethylrhodamine-labeled α-bungarotoxin and lateral molecular motion in the membrane was measured by the fluorescence photobleaching recovery technique. Three types of experiments are discussed: (I) The effect of enzymatic cleavages, drugs, cross-linkers, and physiological alterations on the lateral motion of acetylcholine receptors and on the characteristic distribution of acetylcholine receptors into patch and diffuse areas. (II) Observation of the distribution and/or motion of fluorescence-labeled concanavalin A receptors, lipid probes, cell surface protein, and stained cholinesterase in acetylcholine receptor patch and diffuse areas. (III) The effect of a protein synthesis inhibitor and electrical stimulation on membrane incorporation of new acetylcholine receptors.Some of the main conclusions are: (a) acetylcholine receptor lateral motion is inhibited by concanavalin A plant lectin and by anti-α-bungarotoxin antibody, but marginally enhanced by treatment with a local anesthetic; (b) patches are stabilized by an immobile cellular structure consisting of molecules other than the acetylcholine receptors themselves; (c) this structure is highly selective for acetylcholine receptors and not for other cell membrane components; (d) acetylcholine receptor patch integrity and diffuse area motion are independent of direct metabolic energy requirements and are sensitive to electrical excitation of myotube; (e) lipid molecules can move laterally in both acetylcholine receptor patches and diffuse areas; and (f) acetylcholine receptor lateral motion in diffuse areas and immobility in patch areas are not altered by specific agents which are known to affect extrinsic cell surface proteins, or cytoplasmic microfilaments and microtubules.  相似文献   
44.
45.
During the scale‐up of a bioprocess, not all characteristics of the process can be kept constant throughout the different scales. This typically results in increased mixing times with increasing reactor volumes. The poor mixing leads in turn to the formation of concentration gradients throughout the reactor and exposes cells to varying external conditions based on their location in the bioreactor. This can affect process performance and complicate process scale‐up. Scale‐down simulators, which aim at replicating the large‐scale environment, expose the cells to changing environmental conditions. This has the potential to reveal adaptation mechanisms, which cells are using to adjust to rapidly fluctuating environmental conditions and can identify possible root causes for difficulties maintaining similar process performance at different scales. This understanding is of utmost importance in process validation. Additionally, these simulators also have the potential to be used for selecting cells, which are most robust when encountering changing extracellular conditions. The aim of this review is to summarize recent work in this interesting and promising area with the focus on mammalian bioprocesses, since microbial processes have been extensively reviewed.  相似文献   
46.
Large‐scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2‐Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large‐scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N‐glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large‐scale bioreactors.  相似文献   
47.
Coronary artery disease (CAD) is one of the biggest threats to human life. Circulating microRNAs (miRNAs) have been reported to be linked to the pathogenesis of CAD, indicating the possible role in CAD diagnosis. The present study aimed to explore the expression profile of plasma miRNAs and estimate their value in diagnosis for CAD. 67 Non‐CAD control subjects and 88 CAD patients were enrolled. We conducted careful evaluation by RT‐PCR analysis, Spearman rank correlation coefficients analysis, Receiver Operating Characteristic (ROC) curves analysis and so on. The plasma levels of six miRNAs known to be related to CAD were measured and three of them showed obvious expression change. Circulating miR‐29a‐3p, miR‐574‐3p and miR‐574‐5p were all significantly increased. ROC analysis revealed the probability of the three miRNAs as biomarkers with AUCs (areas under the ROC curve) of 0.830, 0.792 and 0.789, respectively. They were significantly correlated with each other in CAD patients, suggesting the possibility of joint diagnosis. The combined AUC was 0.915, much higher than each single miRNA. Therefore, our study revealed three promising biomarkers for early diagnosis of CAD. The combination of these miRNAs may act more effectively than individual ones for CAD diagnosis.  相似文献   
48.
The current standard biomarker for myocardial infarction (MI) is high‐sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched‐controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface‐epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non‐inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.  相似文献   
49.
Numerous studies have demonstrated that thioredoxin-interacting protein (TXNIP) expression of peripheral blood leucocytes is increased in coronary artery disease (CAD). However, the molecular mechanism of this phenomenon remained unclear. DNA methylation plays important roles in the regulation of gene expression. Therefore, we speculated there might be a close association between the expression of TXNIP and methylation. In this study, we found that compared with controls, DNA methylation at cg19693031 was decreased in CAD, while mRNA expressions of TXNIP and inflammatory factors, NLRP3, IL-1β, IL-18, were increased. Methylation at cg19693031 was negatively associated with TXNIP expression in the cohort, THP-1 and macrophages/foam cells. Furthermore, Transwell assay and co-cultured adhesion assay were performed to investigate functions of TXNIP on the migration of THP-1 or the adhesion of THP-1 on the surface of endothelial cells, respectively. Notably, overexpressed TXNIP promoted the migration and adhesion of THP-1 cells and expressions of NLRP3, IL-18 and IL-1β. Oppositely, knock-down TXNIP inhibited the migration and adhesion of THP-1 and expressions of NLRP3, IL-18. In conclusion, increased TXNIP expression, related to cg19693031 demethylation orientates monocytes towards an inflammatory status through the NLRP3 inflammasome pathway involved in the development of CAD.  相似文献   
50.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号