首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2439篇
  免费   378篇
  国内免费   273篇
  2024年   12篇
  2023年   86篇
  2022年   70篇
  2021年   154篇
  2020年   149篇
  2019年   142篇
  2018年   117篇
  2017年   127篇
  2016年   119篇
  2015年   126篇
  2014年   176篇
  2013年   165篇
  2012年   158篇
  2011年   135篇
  2010年   99篇
  2009年   164篇
  2008年   132篇
  2007年   126篇
  2006年   149篇
  2005年   115篇
  2004年   84篇
  2003年   61篇
  2002年   63篇
  2001年   75篇
  2000年   36篇
  1999年   53篇
  1998年   37篇
  1997年   33篇
  1996年   28篇
  1995年   25篇
  1994年   18篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   5篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3090条查询结果,搜索用时 17 毫秒
991.
Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.  相似文献   
992.
  • Within‐individual trait variation – otherwise known as sub‐individual variation – is an important component of phenotypic variation, with both a genetic and epigenetic basis. We explore its adaptive value and the effects of ontogeny and the environment on sub‐individual variability.
  • We conducted a field study to analyse the effects of tree age, soil pH, soil water content and soil nutrients on sub‐individual variability in fruit size of hawthorn (Crataegus monogyna) in three sites in northwest Spain. Additionally, we examined how bird‐mediated selection influences average and sub‐individual variation in fruit size.
  • Results show that average and sub‐individual variations in fruit size were related to fitness affecting seed dispersal. Older trees produced larger fruits, but tree age did not affect sub‐individual variation in fruit size. Abiotic environmental factors differently affected sub‐individual variation and average fruit size. Seed‐dispersing birds exerted correlated selection on average and variation in fruit size, favouring trees with larger and less variable fruit size at one site.
  • Our work suggests that the fruit size variation within individual trees, the sub‐individual variation, is modified by abiotic environmental factors and, additionally, is an adaptive trait that responds to natural selection.
  相似文献   
993.
Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co‐adaptation in a predator–prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre‐ and post‐perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre‐perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.  相似文献   
994.
The importance of ecologically mediated divergent selection in accelerating trait evolution has been poorly studied in the most species‐rich biome of the planet, the continental Neotropics. We performed macroevolutionary analyses of trait divergence and diversification rates across closely related pairs of Andean and Amazonian passerine birds, to assess whether the difference in elevational range separating species pairs – a proxy for the degree of ecological divergence – influences the speed of trait evolution and diversification rates. We found that elevational differentiation is associated with faster divergence of song frequency, a trait important for pre‐mating isolation, and several morphological traits, which may contribute to extrinsic post‐mating isolation. However, elevational differentiation did not increase recent speciation rates, possibly due to early bursts of diversification during the uplift of the eastern Andes followed by a slow‐down in speciation rate. Our results suggest that ecological differentiation may speed up trait evolution, but not diversification of Neotropical birds.  相似文献   
995.
996.
997.
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high‐density SNP‐based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%–5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion‐binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker‐assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.  相似文献   
998.
Predators can indirectly reduce herbivory by killing herbivores. In addition, predation risk can influence the feeding rate and feeding location of herbivores. Herbivores are expected to avoid plants currently occupied by a predator. Consequently, less herbivory is expected on plants bearing fresh predator cues. We examined whether wood crickets, Nemobius sylvestris Bosc (Orthoptera: Gryllidae), avoided plants bearing the chemical cues of nursery web spiders, Pisaura mirabilis Clerck (Araneae: Pisauridae), or red wood ants, Formica rufa L. (Hymenoptera: Formicidae). We conducted a series of behavioural experiments, in which crickets had the choice between a plant with spider or ant cues vs. a control plant, a plant with spider cues vs. a plant with ant cues, or two control plants. For all plants, we quantified leaf damage and the position and weight change in the crickets. Crickets avoided plants with spider cues. In contrast, ant cues did not significantly deter crickets. The herbivory pattern among the plants reflected the plant choice of the crickets. However, net herbivory was not affected by the presence of predator cues. Thus, our results suggest that spider cues affect feeding location rather than the total amount of herbivory.  相似文献   
999.
Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes, and anal plates exhibit striking differences between Drosophila mauritiana and D. simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits.  相似文献   
1000.
We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single-SNP genome-wide association studies (GWAS) or regional heritability mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness. The pleiotropic model investigated, in contrast to previous models, implies that common mutations of large effect are responsible for most of the genetic variation for quantitative traits, except when the trait is fitness itself. We show that GWAS applied to the full sequence increases the number of QTL detected by as much as 50% compared to the number found with SNP chips but only modestly increases the amount of additive genetic variance explained. Even with full sequence data, the total amount of additive variance explained is generally below 50%. Using RHM on the full sequence data, a slightly larger number of QTL are detected than by GWAS if the same probability threshold is assumed, but these QTL explain a slightly smaller amount of genetic variance. Our results also suggest that most of the missing heritability is due to the inability to detect variants of moderate effect (∼0.03–0.3 phenotypic SDs) segregating at substantial frequencies. Very rare variants, which are more difficult to detect by GWAS, are expected to contribute little genetic variation, so their eventual detection is less relevant for resolving the missing heritability problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号