首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5070篇
  免费   546篇
  国内免费   316篇
  2023年   129篇
  2022年   85篇
  2021年   164篇
  2020年   210篇
  2019年   295篇
  2018年   239篇
  2017年   201篇
  2016年   187篇
  2015年   172篇
  2014年   306篇
  2013年   393篇
  2012年   176篇
  2011年   244篇
  2010年   204篇
  2009年   229篇
  2008年   271篇
  2007年   242篇
  2006年   264篇
  2005年   208篇
  2004年   211篇
  2003年   201篇
  2002年   152篇
  2001年   125篇
  2000年   99篇
  1999年   94篇
  1998年   95篇
  1997年   74篇
  1996年   74篇
  1995年   69篇
  1994年   65篇
  1993年   47篇
  1992年   56篇
  1991年   33篇
  1990年   21篇
  1989年   25篇
  1988年   21篇
  1987年   29篇
  1986年   26篇
  1985年   31篇
  1984年   18篇
  1983年   13篇
  1982年   20篇
  1981年   10篇
  1980年   20篇
  1979年   11篇
  1978年   15篇
  1977年   10篇
  1976年   9篇
  1975年   8篇
  1971年   7篇
排序方式: 共有5932条查询结果,搜索用时 375 毫秒
151.
Aminopeptidase N (APN/CD13) over expressed on tumour cells, plays a critical role in tumour invasion, metastasis and tumour angiogenesis. In this article, we described the design, synthesis and preliminary activity studies of novel 3-amino-2-hydroxyl-3-phenylpropanoic acid derivatives as APN inhibitors. The in vitro enzymatic inhibitions on APN from porcine kidney showed that compound 7e had the most potent inhibitory activity against APN with the IC50 value to 1.26?±?0.01 μM, which is better than that of bestatin (IC50?=?2.55?±?0.11 μM). In addition, compound 7e also showed better inhibitory activity against APN on human ovary clear cell carcinoma cell ES-2 than bestatin with the IC50 value to 30.19?±?1.02 μM versus 60.61?±?0.1 μM. Compound 7e could be used as the lead compound in the future for anti-cancer agent research.  相似文献   
152.
In this study, the ability to tailor the peptide-binding specificity of an RNA was investigated. First, variants of the Rev-response element (RRE) RNA with different specificities toward the natural binding partner, Rev, and two RRE-binding aptamers, the RSG-1.2 and the Kl peptides, were identified. Next, hybrid RRE mutants with combinations of two sets of specificity-altering substitutions were tested for peptide-binding specificity. It was shown that in most cases the results of the combination of individual mutations were of an additive nature, therefore providing a way to manipulate the peptide-binding specificity of an RNA in a predictable manner.  相似文献   
153.
The aim of the present study was to increase the solubility of an anti-allergic drug loratadine by making its inclusion complex with β-cyclodextrin and to develop it’s thermally triggered mucoadhesive in situ nasal gel so as to overcome first-pass effect and consequently enhance its bioavailability. A total of eight formulations were prepared by cold method and optimized by 23 full factorial design. Independent variables (concentration of poloxamer 407, concentration of carbopol 934 P, and pure drug or its inclusion complex) were optimized in order to achieve desired gelling temperature with sufficient mucoadhesive strength and maximum permeation across experimental nasal membrane. The design was validated by extra design checkpoint formulation (F9) and Pareto charts were used to help eliminate terms that did not have a statistically significant effect. The response surface plots and possible interactions between independent variables were analyzed using Design Expert Software 8.0.2 (Stat Ease, Inc., USA). Faster drug permeation with zero-order kinetics and target flux was achieved with formulation containing drug: β-cyclodextrin complex rather than those made with free drug. The optimized formulation (F8) with a gelling temperature of 28.6 ± 0.47°C and highest mucoadhesive strength of 7,676.0 ± 0.97 dyn/cm2 displayed 97.74 ± 0.87% cumulative drug permeation at 6 h. It was stable for over 3 months and histological examination revealed no remarkable damage to the nasal tissue.  相似文献   
154.
155.
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.  相似文献   
156.
The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.  相似文献   
157.
We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding combined with layer transfer enables the replication of arbitrary surface patterns from a master structure onto the functional material. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes. In particular we demonstrate the fabrication of patterned transparent zinc oxide electrodes for light trapping applications in solar cells.  相似文献   
158.
《MABS-AUSTIN》2013,5(2):153-160
Monoclonal antibodies (mAbs) are used with increasing success against many tumors but, for brain tumors, the blood-brain barrier (BBB) is a special concern. The BBB prevents antibody entry to the normal brain; however, its role in brain tumor therapy is more complex. The BBB is closest to normal at micro-tumor sites; its properties and importance change as the tumor grows. In this review, evolving insight into the role of the BBB is balanced against other factors that affect efficacy or interpretation when mAbs are used against brain tumor targets. As specific examples, glioblastoma multiforme (GBM), primary central nervous system lymphoma (PCNSL) and blood-borne metastases from breast cancer are discussed in the context of treatment, respectively, with the mAbs bevacizumab, rituximab, and trastuzumab, each of which is already widely used against tumor outside the brain. It is suggested that success against brain tumors will require getting past the BBB in two senses: physically, to better attack brain tumor targets and conceptually, to give equal attention to problems that are shared with other tumor sites.  相似文献   
159.
《MABS-AUSTIN》2013,5(8):1281-1290
ABSTRACT

Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug’s potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs’ sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.  相似文献   
160.
《MABS-AUSTIN》2013,5(5):809-811
ABSTRACT

We live in an era of rapidly advancing computing capacity and algorithmic sophistication. “Big data” and “artificial intelligence”find progressively wider use in all spheres of human activity, including healthcare. A diverse array of computational technologies is being applied with increasing frequency to antibody drug research and development (R&D). Their successful applications are met with great interest due to the potential for accelerating and streamlining the antibody R&D process. While this excitement is very likely justified in the long term, it is less likely that the transition from the first use to routine practice will escape challenges that other new technologies had experienced before they began to blossom. This transition typically requires many cycles of iterative learning that rely on the deconstruction of the technology to understand its pitfalls and define vectors for optimization. The study by Vasquez et al. identifies a key obstacle to such learning: the lack of transparency regarding methodology in computational antibody design reports, which has the potential to mislead the community efforts  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号