首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17032篇
  免费   979篇
  国内免费   631篇
  2023年   272篇
  2022年   304篇
  2021年   474篇
  2020年   458篇
  2019年   602篇
  2018年   624篇
  2017年   408篇
  2016年   365篇
  2015年   440篇
  2014年   996篇
  2013年   1302篇
  2012年   755篇
  2011年   1055篇
  2010年   687篇
  2009年   793篇
  2008年   803篇
  2007年   827篇
  2006年   729篇
  2005年   682篇
  2004年   577篇
  2003年   513篇
  2002年   428篇
  2001年   300篇
  2000年   261篇
  1999年   265篇
  1998年   204篇
  1997年   216篇
  1996年   185篇
  1995年   221篇
  1994年   147篇
  1993年   159篇
  1992年   147篇
  1991年   147篇
  1990年   109篇
  1989年   100篇
  1988年   101篇
  1987年   94篇
  1986年   83篇
  1985年   168篇
  1984年   235篇
  1983年   161篇
  1982年   185篇
  1981年   166篇
  1980年   159篇
  1979年   133篇
  1978年   123篇
  1977年   108篇
  1976年   93篇
  1975年   83篇
  1973年   66篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
991.
C-6 opening of 5,6-cyclic sulfate derivatives of mannofuranose with a thiolate anion followed by acidic hydrolysis of the acyclic sulfate gave 6-S-alkyl derivatives in good yields (70-95%) and short reaction times (10-15min). This methodology was applied to the synthesis of methyl 2,3-O-isopropylidene-6-S-(2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl)-6-thio-alpha-d-mannofuranoside (70%), 2,3-O-isopropylidene-6-S-(2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl)-6-thio-alpha-d-mannofuranose (87%) and 2,3-O-isopropylidene-6-S-(1,2:3,4-di-O-isopropylidene-alpha-d-galactopyranos-6-yl)-6-thio-alpha-d-mannofuranose (87%).  相似文献   
992.
Zhang F  Vasella A 《Carbohydrate research》2007,342(17):2546-2556
Partially deuteriated 1,5,6,6-(2)H(4)-d-glucose and 1(I),1(II),5(I),5(II),6(I),6(I),6(II),6(II)-(2)H(8)-d-cellobiose were synthesized in high yields and on a large scale from d-glucose. (2)H enrichment at C-5 and C-6 of each glucopyranosyl unit in excess of 85% and 90%, respectively, was realized by (1)H-(2)H exchange in (2)H(2)O containing deuteriated Raney Ni. Nucleophilic addition of LiAlD(4) to 5,6,6-(2)H(3)-2,3,4,6-tetra-O-benzyl-d-gluconolactone led to a 98% (2)H enrichment at C-1. Deuteriated cellobiose is of interest as building block for the synthesis of a model compound of cellulose I.  相似文献   
993.
An NMR spectroscopy study ((31)P, (1)H, (13)C) of the postulated crosslinking mechanism of sodium trimetaphosphate (STMP) on polysaccharides is reported using methyl alpha-D-glucopyranoside as a model. In a first step, reaction of STMP with Glc-OMe gives grafted sodium tripolyphosphate (STPP(g)). On the one hand, STTP(g) can react with a second alcohol functionality to give a crosslinked monophosphate. On the other hand, a monophosphate (grafted phosphate) could be obtained by alkaline degradation of STPP(g). NMR spectroscopy allows to detect the various species formed and to obtain the crosslinking density of STMP-polysaccharides hydrogels.  相似文献   
994.
To better understand the roles of gammadelta T cells in mucosal infection, we utilized Salmonella enterica serovar Typhimurium (Salmonella serovar Typhimurium) infection in cattle as it closely approximates Salmonella serovar Typhimurium-induced enterocolitis in humans. Protein and gene expression in alphabeta and gammadelta T cells derived from lymphatic ducts draining the gut mucosa in Salmonella serovar Typhimurium-infected calves were analyzed. In calves with enterocolitis, general gene expression trends in gammadelta T cells suggested subtle activation and innate response, whereas alphabeta T cells were relatively quiescent following Salmonella serovar Typhimurium infection. An increase in IL-2R alpha expression on gammadelta T cells from infected calves and results from in vitro assays suggested that gammadelta T cells were primed by Salmonella serovar Typhimurium LPS to better respond to IL-2 and IL-15. Together with gene expression trends in vivo, these data support early priming activation of target tissue gammadelta T cells during Salmonella serovar Typhimurium infection.  相似文献   
995.
996.
Zhong Z  Chen R  Xing R  Chen X  Liu S  Guo Z  Ji X  Wang L  Li P 《Carbohydrate research》2007,342(16):2390-2395
Sulfanilamide derivatives of chitosan (2-(4-acetamido-2-sulfanimide)-chitosan (HSACS, LSACS), 2-(4-acetamido-2-sulfanimide)-6-sulfo-chitosan (HSACSS, LSACSS) and 2-(4-acetamido-2-sulfanimide)-6-carboxymethyl-chitosan (HSACMCS, LSACMCS)) were prepared using different molecular weights of chitosan (CS), carboxymethyl chitosan (CMCS) and chitosan sulfates (CSS) reacted with 4-acetamidobenzene sulfonyl chloride in dimethylsulfoxide solution. The structures of the derivatives were characterized by FT-IR spectroscopy and elemental analysis, which showed that the substitution degree of sulfanilamide group of HSACS, HSACSS, HSACMCS, LSACS, LSACSS and LSACMCS were 0.623, 0.492, 0.515, 0.576, 0.463 and 0.477, respectively. The solubility of the derivatives (pH<7.5) was higher than that of chitosan (pH<6.5). The antifungal activities of the derivatives against Aiternaria solani and Phomopsis asparagi were evaluated based on the method of Jasso et al. in the experiment. The results indicated that all the prepared sulfanilamide derivatives had a significant inhibiting effect on the investigated fungi in the polymer concentration range from 50 to 500 microg mL(-1). The antifungal activities of the derivatives increased with increasing the molecular weight, concentration or the substitution degree. The sulfanilamide derivatives of CS, CMCS and CSS show stronger antifungal activities than CS, CMCS and CSS.  相似文献   
997.
The regeneration of lens tissue from the iris of newts has become a classical model of developmental plasticity, although little is known about the corresponding plasticity of the mammalian iris. We here demonstrate and characterize multipotent cells within the iris pigment epithelium (IPE) of postnatal and adult rodents. Acutely-isolated IPE cells were morphologically homogeneous and highly pigmented, but some produced neurospheres which expressed markers characteristic of neural stem/progenitor cells. Stem/progenitor cell markers were also expressed in the IPE in vivo both neonatally and into adulthood. Inner and outer IPE layers differentially expressed Nestin (Nes) in a manner suggesting that they respectively shared origins with neural retina (NR) and pigmented epithelial (RPE) layers. Transgenic marking enabled the enrichment of Nes-expressing IPE cells ex vivo, revealing a pronounced capacity to form neurospheres and differentiate into photoreceptor cells. IPE cells that did not express Nes were less able to form neurospheres, but a subset initiated the expression of pan-neural markers in primary adherent culture. These data collectively suggest that discrete populations of highly-pigmented cells with heterogeneous developmental potencies exist postnatally within the IPE, and that some of them are able to differentiate into multiple neuronal cell types.  相似文献   
998.
We have identified a gene by microarray analysis that is located on chromosome 6 (c6orf32), whose expression is increased during human fetal myoblast differentiation. The protein encoded by c6orf32 is expressed both in myogenic and non-myogenic primary cells isolated from 18-week old human fetal skeletal muscle. Immunofluorescent staining indicated that C6ORF32 localizes to the cellular cytoskeleton and filopodia, and often displays polarized expression within the cell. mRNA knockdown experiments in the C2C12 murine myoblast cell line demonstrated that cells lacking c6orf32 exhibit a myogenic differentiation defect, characterized by a decrease in the expression of myogenin and myosin heavy chain (MHC) proteins, whereas MyoD1 was unaltered. In contrast, overexpression of c6orf32 in C2C12 or HEK293 cells (a non-muscle cell line) promoted formation of long membrane protrusions (filopodia). Analysis of serial deletion mutants demonstrated that amino acids 55-113 of C6ORF32 are likely involved in filopodia formation. These results indicate that C6ORF32 is a novel protein likely to play multiple functions, including promoting myogenic cell differentiation, cytoskeletal rearrangement and filopodia formation.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号