首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23618篇
  免费   1830篇
  国内免费   1689篇
  2024年   79篇
  2023年   534篇
  2022年   512篇
  2021年   923篇
  2020年   962篇
  2019年   1122篇
  2018年   969篇
  2017年   888篇
  2016年   885篇
  2015年   1147篇
  2014年   1431篇
  2013年   2146篇
  2012年   993篇
  2011年   1193篇
  2010年   811篇
  2009年   1302篇
  2008年   1344篇
  2007年   1301篇
  2006年   1203篇
  2005年   957篇
  2004年   897篇
  2003年   731篇
  2002年   590篇
  2001年   487篇
  2000年   419篇
  1999年   390篇
  1998年   369篇
  1997年   371篇
  1996年   279篇
  1995年   244篇
  1994年   216篇
  1993年   211篇
  1992年   182篇
  1991年   155篇
  1990年   132篇
  1989年   114篇
  1988年   99篇
  1987年   88篇
  1986年   73篇
  1985年   84篇
  1984年   59篇
  1983年   38篇
  1982年   67篇
  1981年   48篇
  1980年   32篇
  1979年   22篇
  1978年   14篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
62.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   
63.
The plant growth regulators, gibberellic acid (GA3), ethephon and chlormequat chloride (CCC) were sprayed on young lettuce, cauliflower and bean (Phaseolus vulgaris) plants, which had either been given or not been given a mechanically-induced stress (MIS) treatment. MIS was applied by brushing the plants with paper for 1.5 minutes each day. GA3 increased extension growth of bean and leaf length of lettuce in unbrushed plants as much as in brushed ones. CCC and ethephon were less effective at reducing the height of brushed bean plants compared to unbrushed ones. The effects of CCC on the growth of cauliflower and lettuce plants was not influenced by brushing, whereas unbrushed plants responded more readily to ethephon than did brushed ones. The effects of CCC on growth were generally similar to those of MIS whereas the effects of ethephon were in many ways different to MIS.The results are discussed in relation to the use of PGR and MIS treatments for modifying plant growth.  相似文献   
64.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   
65.
G. Gay  C. Kerhoas  C. Dumas 《Planta》1987,171(1):82-87
The quality of Cucurbita pepo L. pollen was studied using field pollinations and the fluorochromatic-reaction test. The extreme sensitivity of this pollen to dehydration and ageing is demonstrated. Controlled stress applied to mature pollen leads to the development of seedless fruits. Molecular signals seem to be involved in the induction of this parthenocarpy. These results indicate the existence of distinct sequences involved in the completion of the fertilization program of pollen. With pollen altered by stress, the fertilization process may be stopped at different stages of its completion. We bring evidence that Cucurbita pepo plants have developed special adaptations in order to compensate for the poor viability of their pollen.Abbreviation FCR fluorochromatic reaction  相似文献   
66.
Day/night changes in turgor pressure (P) and titratable acidity content were investigated in the (Crassulacean-acid-metabolism (CAM) plant Kalanchoe daigremontiana. Measurements of P were made on individual mesophyll cells of intact attached leaves using the pressure-probe technique. Under conditions of high relative humidity, when transpiration rates were minimal, changes in P correlated well with changes in the level of titratable acidity. During the standard 12 h light/12 h dark cycle, maximum turgor pressure (0.15 MPa) occurred at the end of the dark period when the level of titratable acidity was highest (about 300 eq H+·g-1 fresh weight). A close relationship between P and titratable acidity was also seen in leaves exposed to perturbations of the standard light/dark cycle. (The dark period was either prolonged, or else only CO2-free air was supplied in this period). In plants deprived of irrigation for five weeks, diurnal changes in titratable acidity of the leaves were reduced (H=160 eq H+·g-1 fresh weight) and P increased from essentially zero at the end of the light period to 0.02 MPa at the end of the dark period. Following more severe water stress (experiments were made on leaves which had been detached for five weeks), P was zero throughout day and night, yet small diurnal changes in titratable acidity were still measured. These findings are discussed in relation to a hypothesis by Lüttge et al. 1975 (Plant Physiol. 56,613-616) for the role of P in the regulation of acidification/de-acidification cycles of plants exhibiting CAM.Abbreviations CAM crassulacean acid metabolism - FW fresh weight - P turgor pressure  相似文献   
67.
Mechanics of root growth   总被引:4,自引:1,他引:3  
Summary A model is developed for the rate of elongation of a root tip in terms of the balance of pressures acting on the root. Differentials of this equation give expressions for the changes in root elongation rate with respect to soil water potential and soil mechanical resistance. The model predicts that root cells osmoregulate against both water stress and soil mechanical resistance with predicts that root cells osmoregulate against both water stress and soil mechanical resistance with similar efficiencies which are less than 100%. Analysis of published data leads to the conclusion that root tips of pea osmoregulate with 70% efficiency. A working equation is developed for the elongation rate of roots in conditions of combined water stress and mechanical resistance.  相似文献   
68.
Synopsis Laboratory experiments were conducted to examine changes in behavior of red hake,Urophycis chuss, under decreasing concentrations of dissolved oxygen (DO). Since the ecological requirements of this species change with age, responses were measured for three different groups: (1) age 0+, = 89 mm total length (TL); (2) age 1+, = 238 mm TL; and (3) age 2–3+, = 397 mm TL. As DO decreased from 8–10 mg l-1 to < 0.5 mg l-1, changes were evident in active time, water column activity, range of horizontal movement, food searching, and agonistic behavior. Age 0+ fish were most sensitive, moving up into the water column and swimming continuously as DO levels fell below 4.2 mg l-1. Age 2–3+ fish were the least responsive, remaining on the substrate and increasing only their range of movement at concentrations below 3 mg l-1. Responses of age 1 + fish were variable, possibly reflecting a transition stage between the younger and older fish. Common to all groups was the decrease and eventual cessation of food searching.  相似文献   
69.
Play behavior and stress-associated behavior of a captive juvenile gorilla were observed before and after his transfer to a larger and more natural environment. The gorilla was observed for 4 months after the transfer and at 1 and 4 years after the transfer. Throughout his first month in the new environment play decreased dramatically. Although play subsequently increased again 2 months and 1 year after the transfer, it never reached the levels of play in the old environment. Four years after the move his play had decreased again to the low level of his first month in the new environment. Two of his stress-associated behaviors, coprophagy and regurgitation/reingestion, decreased after the transfer. Self-clasping behavior increased initially in the new environment and remained at high levels 1 year after the move. Four years after the move his self-clasping behavior was significantly less than at 1 year after the move; however, it continued to be significantly greater than in the old environment. These findings suggest that larger and more natural environments do not necessarily result in more play activity or a reduction in all stress-associated behavior.  相似文献   
70.
Summary Fathead minnows, Pimephales promelas, and yellow perch, Perca flavescens, were transferred from moderately soft Lake Superior water (hardness 45mg/l as CaCO3) to very soft diluted Lake Superior water (hardness 4.5mg/l). Sulfuric acid was added in some treatments by means of a multichannel diluter. In very soft water, chloride cells proliferated in the gills, especially in the epithelium of the secondary lamellae. When exposed to acid, chloride cells were damaged and less abundant in the secondary lamellae, and blood osmolality was reduced at pH 5.0 (x = 188 mOsm/kg, 9 days exposure; normal 280 mOsm/kg) for the minnows and pH 4.1 (x = 218 mOsm/kg, 58 days exposure; normal 329 mOsm/kg) for the perch. Certain chloride cells which form gland-like clusters in the primary lamellae of perch gills showed little damage even at pH 4.1. The present study supports the view that chloride cells proliferate in very soft fresh water to help maintain ionic balances, and that damage to these cells in acidified soft water may be related to diminished ionoregulatory capacity. The greater acid tolerance of chloride cells of, and the higher blood osmolality maintained by, perch could help to explain the greater tolerance of this species to low pH. In some cases, a species' ability to acclimate to very soft water and acidified soft water may depend upon the number, distribution, and physiology of its chloride cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号