首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   12篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1991年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
排序方式: 共有133条查询结果,搜索用时 203 毫秒
41.
Preserved vascular reactivity of rat renal arteries after cold storage   总被引:3,自引:0,他引:3  
In cultured renal tubular cells hypothermia results in cell damage caused by iron-dependent formation of reactive oxygen species. It is unknown whether cold preservation affects function of renal vessels. Rat renal arcuate arteries were stored in a physiological salt solution at 4 degrees C for 24h and compared to control arteries (not stored). To some of the stored arteries the iron chelator 2,2'-dipyridyl was added. Endothelium-independent vasoconstriction was assessed by cumulative concentration-response curves for potassium and phenylephrine in a small vessel myograph. Endothelium-independent vasodilation was assessed with sodium nitroprusside and endothelium-dependent vasodilation with histamine. Cold storage for 24h did not affect vascular reactivity of renal small arteries and no influence of the iron chelator was seen. Since 24h of cold storage considerable damages renal tubular cells both in vitro and after kidney transplantation, these results suggest that renal arteries are less sensitive to cold-induced damage than tubular cells.  相似文献   
42.
We have investigated different signaling molecules that could be activated by temperature acclimation and hypoxia, using an experimental approach consisting in submerging frogs in a water-filled box maintained at 2-4 degrees C at ambient oxygen levels or supplied with 98% N2:2% CO2 for normoxia or hypoxia conditions, respectively. The results obtained showed no significant changes in the expression of heat shock protein 70. The phosphorylation state of AMP-dependent activated protein kinase, the down-stream component of a protein kinase cascade that acts as an intracellular energy sensor, was significantly increased in both experimental conditions, showing higher values in the absence of oxygen. Similarly, the phosphorylation state of one of its known substrates, elongation factor 2, was also increased, consistent with the arrest of protein synthesis. These results point out an important role of this kinase, adjusting the rates of ATP-consuming and ATP-generating pathways, in the survival strategies to hypoxia and hypothermia.  相似文献   
43.
Abstract: Regional protein synthesis of brain was measured by quantitative autoradiography in normo- and hypothermic rats submitted to 30 min of four-vessel occlusion. The tracer, [14C]leucine, was applied by controlled intravenous infusion to achieve constant plasma specific activity, and the admixture by proteolysis of unlabeled amino acids to the brain amino acid precursor pool was corrected by measuring the ratio of the labeled-to-unlabeled leucine distribution space in plasma and brain. In normothermic rats preischemic protein synthesis rate was 16.0 ± 3.2, 9.2 ± 3.4, 15.5 ± 2.8, and 15.5 ± 3.1 nmol of leucine/g/min (mean ± SD) in the frontal cortex, striatum, hippocampal CA1 sector, and thalamus, respectively. After 30 min of ischemia at a constant brain temperature of 36°C and a recirculation time of 1 h, protein synthesis was reduced in these regions to 6, 9, 8, and 36%, respectively. With ongoing recirculation, protein synthesis gradually returned to normal within 3 days in all areas except in the stratum pyramidale of the hippocampal CA1 sector where inhibition of neuronal protein synthesis was irreversible. Lowering of brain temperature to 30°C during ischemia did not prevent the early global postischemic depression of protein synthesis, but promoted recovery to or above normal within 6 h in all areas including the stratum pyramidale of the CA1 sector. Improvement of protein synthesis in the CA1 sector was associated with improved neuronal survival, which increased from 1% in the normothermic to 69% in the hypothermic animals. These observations suggest that the protective effect of mild hypothermia on ischemic injury of the hippocampal CA1 sector is mediated by the reversal of the postischemic inhibition of protein synthesis.  相似文献   
44.
Periodogram techniques on detrended data were used to determine the incidence of Trypanosoma brucei brucei infection on the distribution of the core temperature of rats and the expression of temperature rhythms. In such an animal model, sudden episodic hypothermic bouts were described. These episodes of hypothermia are used here as temporal marks for the purpose of performing punctual comparisons on temperature organization. The experiment was conducted on 10 infected and 3 control Sprague-Dawley rats reared under a 24 h light-dark cycle. Core temperature was recorded continuously throughout the experiment, until the animals' death. Temperature distributions, analyzed longitudinally across the full duration of the experiment, exhibited a progressive shift from a bimodal to unimodal pattern, suggesting a weakening of the day/night core temperature differences. After hypothermic events, the robustness of the circadian rhythm substantially weakened, also affecting the ultradian components. The ultradian periods were reduced, suggesting fragmentation of temperature generation. Moreover, differences between daytime and nighttime ultradian patterns decreased during illness, confirming the weakening of the circadian component. The results of the experiments show that both core temperature distribution and temperature rhythm were disrupted during the infection. These disruptions worsened after each episode of hypothermia, suggesting an alteration of the temperature regulatory system.  相似文献   
45.
Central administration of exogenous cyclo(His-Pro) (CHP) is known to produce hypothermia in rodents. In the present study, we examined the role of endogenous CHP in cold-induced hypothermia in the desert rat, Mastomys natalensis. The results of these studies show that a rise in hypothalamic CHP content accompanied a decrease in rectal temperature during cold exposure. Immunoneutralization of endogenous CHP resulted in a significant decline in cold-induced hypothermia. In addition, central administration of cyclo(Ala-Gly), a structural analogue of CHP, also led to a decrease in cold-induced hypothermia. The results of these studies show that changes in endogenous CHP levels may affect body temperature regulation.  相似文献   
46.

Background

Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport.

Results

Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice.

Conclusions

Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.  相似文献   
47.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   
48.
1.
To avoid anesthesia confounders, free-ranging rats were exposed (4 h) to cool water (CW; 10 °C; 5 cm), warm water (WW; 35 °C; 5 cm) or temperate air (TA; 25 °C) to induce hypothermia, or control for water or novel environment stress, respectively.  相似文献   
49.
朱海彬  彭罗根  赵会民 《蛇志》2014,(2):145-147
目的研究人工诱导浅低温对创伤性失血性休克兔早期复苏的影响。方法将SPF级健康新西兰大白兔20只,随机分为2组,浅低温组和常温组,每组10只。予乌拉坦麻醉后,采用肾动脉放血法并行小肠夹伤,建立出血未控制失血性休克兔模型。止血前分别将两组实验动物肛温控制在常温(38℃)或浅低温(34℃),顺序予以限制性液体复苏、止血、常压液体复苏并观察8h。期间在基础点(BL),休克起始点(T0),T120(T1),T240(T2),T360(T3),T480(T4)共6个时间点检测血清乳酸(LACT)、丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)浓度,以及终点时存活数、总输液量,并进行分析比较。结果 (1)实验终点时,浅低温复苏组存活兔(9/10只,生存时间477min)较常温复苏组(8/10只,生存时间461min)稍高,但无统计学意义(P0.05);(2)浅低温组T1~T4各时间点的血清乳酸ALT、AST均低于常温组(P0.05)。结论创伤性失血性休克早期应用浅低温治疗有利于抑制酸中毒进展及保护肝脏功能,其机制可能与低温能减轻休克导致的缺血再灌注损伤所引起的损害有关。  相似文献   
50.
We have previously shown that trophic factor supplementation (TFS) of University of Wisconsin (UW) solution reduced early apoptotic changes in vascular endothelial cells. Here, we examine the effect of TFS on cell signaling pathways related to cell growth, differentiation, and apoptosis after cold ischemic storage. In this study, the effect of TFS on the phosphorylation of signaling molecules ERK (extracellular regulated-signaling kinase) 1/2 and p38 MAPK (mitogen activated protein kinases) and of HO-1 (hemeoxygenase-1), relative to changes seen in unmodified UW solution, were determined by Western blot in cells stored under cold ischemic conditions. Primary cultures of canine kidney proximal tubule cells (CKPTC) and human umbilical vein endothelial cells (HUVEC) were used in this study. There was a significant decrease, relative to UW solution, after 1 min rewarming in ERK 1 and 2 activity in CKPTCs. For p38 MAPK, a significant decrease after 5 min rewarming was seen in CKPTC (p < 0.05) while significant reductions relative to UW solution were seen in HUVECs after both 1 and 5 min rewarming (p < 0.05). Phosphorylated HO-1 was also decreased by 43% and 50% in HUVECs, relative to UW solution, after 1 and 5 min rewarming (p < 0.05 at each time point). Collectively, TFS not only limits ERK 1/2 and p38 MAPK activity induced by cold ischemic injury and subsequent rewarming, but also substantially restricted increases in HO-1 phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号