首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2149篇
  免费   103篇
  国内免费   83篇
  2024年   3篇
  2023年   29篇
  2022年   37篇
  2021年   94篇
  2020年   53篇
  2019年   75篇
  2018年   56篇
  2017年   36篇
  2016年   61篇
  2015年   70篇
  2014年   117篇
  2013年   106篇
  2012年   96篇
  2011年   98篇
  2010年   75篇
  2009年   105篇
  2008年   137篇
  2007年   100篇
  2006年   109篇
  2005年   92篇
  2004年   86篇
  2003年   75篇
  2002年   68篇
  2001年   46篇
  2000年   51篇
  1999年   62篇
  1998年   53篇
  1997年   43篇
  1996年   42篇
  1995年   44篇
  1994年   42篇
  1993年   36篇
  1992年   24篇
  1991年   17篇
  1990年   12篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   12篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
排序方式: 共有2335条查询结果,搜索用时 140 毫秒
91.
92.
The regeneration of lens tissue from the iris of newts has become a classical model of developmental plasticity, although little is known about the corresponding plasticity of the mammalian iris. We here demonstrate and characterize multipotent cells within the iris pigment epithelium (IPE) of postnatal and adult rodents. Acutely-isolated IPE cells were morphologically homogeneous and highly pigmented, but some produced neurospheres which expressed markers characteristic of neural stem/progenitor cells. Stem/progenitor cell markers were also expressed in the IPE in vivo both neonatally and into adulthood. Inner and outer IPE layers differentially expressed Nestin (Nes) in a manner suggesting that they respectively shared origins with neural retina (NR) and pigmented epithelial (RPE) layers. Transgenic marking enabled the enrichment of Nes-expressing IPE cells ex vivo, revealing a pronounced capacity to form neurospheres and differentiate into photoreceptor cells. IPE cells that did not express Nes were less able to form neurospheres, but a subset initiated the expression of pan-neural markers in primary adherent culture. These data collectively suggest that discrete populations of highly-pigmented cells with heterogeneous developmental potencies exist postnatally within the IPE, and that some of them are able to differentiate into multiple neuronal cell types.  相似文献   
93.
Functional expression of T-type Ca(2+) channels is developmentally regulated in chick nodose neurons. In this study we have tested the hypothesis that extrinsic factors regulate the expression of T-type Ca(2+) channels in vitro. Voltage-gated Ca(2+) currents were measured using whole-cell patch clamp recordings in E7 nodose neurons cultured under various conditions. Culture of E7 nodose neurons for 48 h with a heart extract induced the expression of T-type Ca(2+) channels without any significant effect on HVA currents. T-type Ca(2+) channel expression was not stimulated by survival promoting factors such as BDNF. The stimulatory effect of heart extract was mediated by a heat-labile, trypsin-sensitive factor. Various hematopoietic cytokines including CNTF and LIF mimic the stimulatory effect of heart extract on T-type Ca(2+) channel expression. The stimulatory effect of heart extract and CNTF requires at least 12 h continuous exposure to reach maximal expression and is not altered by culture of nodose neurons with the protein synthesis inhibitor anisomycin, suggesting that T-type Ca(2+) channel expression is regulated by a posttranslational mechanism. Disruption of the Golgi apparatus with brefeldin-A inhibits the stimulatory effect of heart extract and CNTF suggesting that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Heart extract- or CNTF-evoked stimulation of T-type Ca(2+) channel expression is blocked by the Jak/STAT and MAP kinase blockers, AG490 and U0126, respectively. This study provides new insights into the electrical differentiation of placode-derived sensory neurons and the role of extrinsic factors in regulating the functional expression of Ca(2+) channels.  相似文献   
94.
摘要 目的:探讨与研究丁苯酞对颈动脉狭窄大鼠认知功能及海马CA1区神经元凋亡的影响及相关机制。方法:将颈动脉狭窄大鼠大鼠(n=42)随机为三组-模型组、低剂量丁苯酞(20 mg/kg)组和高剂量丁苯酞(40 mg/kg)组,每组14只。低剂量丁苯酞组与高剂量丁苯酞组每天给予20 mg/kg、40 mg/kg丁苯酞灌胃治疗,对照组给予等剂量的生理盐水灌胃,持续21 d。结果:低剂量丁苯酞组与高剂量丁苯酞组治疗第7 d、第14 d、第21 d的BBT评分低于模型组(P<0.05),高剂量丁苯酞组低于低剂量丁苯酞组(P<0.05)。低剂量丁苯酞组与高剂量丁苯酞组治疗第21 d、第28 d的海马CA1区神经元凋亡指数低于模型组,高剂量丁苯酞组低于低剂量丁苯酞组(P<0.05)。低剂量丁苯酞组与高剂量丁苯酞组治疗第21 d、第28 d的脑组织超氧化物歧化酶(Superoxide dismutase,SOD)活性高于模型组(P<0.05),丙二醛(Malondialdehyde,MDA)活性低于模型组(P<0.05),高剂量丁苯酞组与低剂量丁苯酞组对比差异都有统计学意义(P<0.05)。低剂量丁苯酞组与高剂量丁苯酞组治疗第21 d、第28 d的海马CA1区BCL2-Associated X(Bax)、B淋巴细胞瘤-2(B-cell lymphoma-2,bcl-2)蛋白相对表达水平高于模型组(P<0.05),高剂量丁苯酞组高于低剂量丁苯酞组(P<0.05)。结论:丁苯酞在颈动脉狭窄大鼠的应用能提高海马CA1区Bax、Bcl-2蛋白的表达,抑制神经元的凋亡,改善氧化应激状态,从而提高大鼠的认知功能。  相似文献   
95.
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.  相似文献   
96.
97.
98.
99.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway.  相似文献   
100.
Motor neuron and pancreas homeobox 1-antisense RNA1 (MNX1-AS1) is a novel long noncoding RNA and has been suggested to be overexpressed in human ovarian cancer and glioma. The role of MNX1-AS1 in lung cancer was still unknown. In our study, we observed levels of MNX1-AS1 expression through analyzing The Cancer Genome Atlas and found MNX1-AS1 expression was highly expressed in lung adenocarcinoma tissues compared with normal lung tissues, but there was no statistical difference between lung squamous cell carcinoma tissues and normal lung tissues. Furthermore, we conducted quantitative real-time polymerase chain reaction, and confirmed that the expression of MNX1-AS1 was definitely higher in lung adenocarcinoma tissue samples, but not in lung squamous cell carcinoma tissue samples. In addition, high MNX1-AS1 expression was found to be associated with the low differentiated degree, advanced clinical stage, big tumor size, lymph node metastasis, and distant metastasis in lung adenocarcinoma patients. High expression of MNX1-AS1 was negatively correlated with overall survival time and served as an independent unfavorable prognostic factor in patients with lung adenocarcinoma. The in vitro functional studies suggested that suppression of MNX1-AS1 inhibited lung adenocarcinoma cell proliferation and migration, and promoted apoptosis. In conclusion, MNX1-AS1 is overexpressed in lung adenocarcinoma, and associated with clinical progression and poor prognosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号