首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6343篇
  免费   409篇
  国内免费   169篇
  2024年   7篇
  2023年   157篇
  2022年   55篇
  2021年   186篇
  2020年   173篇
  2019年   215篇
  2018年   172篇
  2017年   153篇
  2016年   120篇
  2015年   181篇
  2014年   275篇
  2013年   352篇
  2012年   215篇
  2011年   314篇
  2010年   205篇
  2009年   301篇
  2008年   312篇
  2007年   384篇
  2006年   277篇
  2005年   316篇
  2004年   255篇
  2003年   234篇
  2002年   211篇
  2001年   154篇
  2000年   107篇
  1999年   146篇
  1998年   115篇
  1997年   118篇
  1996年   110篇
  1995年   121篇
  1994年   87篇
  1993年   99篇
  1992年   84篇
  1991年   84篇
  1990年   73篇
  1989年   48篇
  1988年   66篇
  1987年   57篇
  1986年   33篇
  1985年   45篇
  1984年   58篇
  1983年   34篇
  1982年   62篇
  1981年   36篇
  1980年   41篇
  1979年   42篇
  1978年   8篇
  1977年   9篇
  1976年   5篇
  1974年   4篇
排序方式: 共有6921条查询结果,搜索用时 187 毫秒
81.
Pyrithiamine-induced thiamine-deficiency encephalopathy in the rat shows many neuropathological and biochemical similarities to Wernicke's encephalopathy in humans. Treatment of rats with pyrithiamine resulted in moderate reductions of glutamate in thalamus and pons and in generalized severe reductions of aspartate in pons (by 89%, p less than 0.01), thalamus (by 83%, p less than 0.01), cerebellum (by 53%, p less than 0.01), and cerebral cortex (by 33%, p less than 0.05). Alanine concentrations were concomitantly increased. Activities of the thiamine-dependent enzyme alpha-ketoglutarate dehydrogenase (alpha KGDH) were decreased in parallel with the aspartate decreases; pyruvate dehydrogenase complex activities were unchanged in all brain regions. Following thiamine administration to symptomatic pyrithiamine-treated rats, neurological symptoms were reversed and concentrations of glutamate, aspartate, and alanine, as well as alpha KGDH activities, were restored to normal in cerebral cortex and pons. Aspartate levels and alpha KGDH activities remained below normal values, however, in thalamus. Thus, pyrithiamine treatment leads to reductions of cerebral alpha KGDH and (1) decreased glucose (pyruvate) oxidation resulting in accumulation of alanine and (2) decreased brain content of glutamate and aspartate. Such changes may be of key significance in the pathophysiology of the reversible and irreversible signs of Wernicke's encephalopathy in humans.  相似文献   
82.
To further elucidate the molecular basis of the selective damage to various brain regions by thiamin deficiency, changes in enzymatic activities were compared to carbohydrate flux through various pathways from vulnerable (mammillary bodies and inferior colliculi) and nonvulnerable (cochlear nuclei) regions after 11 or 14 days of pyrithiamin-induced thiamin deficiency. After 11 days,large decreases (–43 to –59%) in transketolase (TK) occurred in all 3 regions; 2-ketoglutarate dehydrogenase (KGDHC) declined (–45%), but only in mammillary bodies; pyruvate dehydrogenase (PDHC) was unaffected. By day 14, TK remained reduced by 58%–66%; KGDHC was now reduced in all regions (–48 to –55%); PDHC was also reduced (–32%), but only in the mammillary bodies. Thus, the enzyme changes did not parallel the pathological vulnerability of these regions to thiamin deficiency.14CO2 production from14C-glucose labeled in various positions was utilized to assess metabolic flux. After 14 days, CO2 production in the vulnerable regions declined severely (–46 to 70%) and approximately twice as much as those in the cochlear nucleus. Also by day 14, the ratio of enzymatic activity to metabolic flux increased as much as 56% in the vulnerable regions, but decreased 18 to 30% in the cochlear nuclei. These differences reflect a greater decrease in flux than enzyme activities in the two vulnerable regions. Thus, selective cellular responses to thiamin deficiency can be demonstrated ex vivo, and these changes can be directly related to alterations in metabolic flux. Since they cannot be related to enzymatic alterations in the three regions, factors other than decreases in the activity of these TPP-dependent enzymes must underlie selective vulnerability in this model of thiamin deficiency.Abbreviations KGDHC 2-ketoglutarate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.61, EC 1.6.4.3. - PDHC pyruvate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.12, EC 1.6.4.3 - TK transketolase (EC 2.2.1.1) - TPP thiamin pyrophosphate  相似文献   
83.
84.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO2 dm−2h−1. The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident.  相似文献   
85.
Bean ( Phaseolus vulgaris L.) seedlings were cultured on complete or phosphate-deficient nutrient medium. After 14 days of culture on phosphate-deficient medium the visible symptoms of Pi deficiency were observed only in the shoot, the fresh and dry weights of the roots were slightly higher than in control plants. The decreased Pi content in the roots had little effect on total respiration rate but had an effect on the level of inhibition of respiration by cyanide. The high resistance of respiration to cyanide observed in Pi-deficient roots was the result of the suppression of cytochrome path activity and an increased participation of the alternative, cyanide-resistant pathway. The cytochrome pathway activity increased when inorganic phosphate was supplied to Pi-deficient roots for 1 or 3.5 h. It is speculated that the suppression of cytochrome pathway in Pi-deficient roots may result from restriction of the phosphorylating capacity or a partial inhibition of cytochrome oxidase activity.  相似文献   
86.
Abstract Advanced selections (families 20010 and 20062) of P. radiata D. Don were exposed to either 340 or 660 μmol CO2 mol 1 for 2 years to establish if growth responses to high CO2 would persist during the development of woody tissues. The experiment was carried out in glasshouses and some of the trees at each CO2 concentration were subjected to phosphorus deficiency and to periodic drought. CO2 enrichment increased whole-plant dry matter production irrespective of water availability, but only when phosphorus supply was adequate. The greatest increase occurred during the exponential period of growth and appeared to be tied to increased rates of photosynthesis, which caused accelerated production of leaf area. The increase in whole-plant dry matter production was similar for both families; however, family 20010 partitioned larger amounts of dry weight to the trunks than family 20062. which favoured the roots and branches. Wood density was generally increased by elevated CO2 and for family 20010 this increase was due to thickening of the tracheid walls. Tracheid length was similar at both CO2 levels but differed between families. These results suggest that, as the atmospheric CO2 concentration rises, field-grown P. radiata should produce more dry weight at sites where phosphorus is not acutely deficient, even where drought limits growth; however, increases in wood production are likely only for genotypes which continue to partition at least the same proportion of dry weight to wood in the trunk.  相似文献   
87.
Iron-dependent formation of ferredoxin and flavodoxin was determined in Anabaena ATCC 29413 and ATCC 29211 by a FPLC procedure. In the first species ferredoxin is replaced by flavodoxin at low iron levels in the vegetative cells only. In the heterocysts from Anabaena ATCC 29151, however, flavodoxin is constitutively formed regardless of the iron supply.Replacement of ferredoxin by flavodoxin had no effect on photosynthetic electron transport, whereas nitrogen fixation was decreased under low iron conditions. As ferredoxin and flavodoxin exhibited the same Km values as electron donors to nitrogenase, an iron-limited synthesis of active nitrogenase was assumed as the reason for inhibited nitrogen fixation. Anabaena ATCC 29211 generally lacks the potential to synthesize flavodoxin. Under iron-starvation conditions, ferredoxin synthesis is limited, with a negative effect on photosynthetic oxygen evolution.  相似文献   
88.
Abstract: The relationship between iron-dependent fetal mouse spinal cord neuron injury and the generation of endogenous lipid hydroperoxides (LOOHs) has been investigated. Cultured spinal cord neurons were incubated with ferrous iron (3–200 µM). Cell viability was measured in terms of the uptake of α-[methyl-3H]aminoisobutyric acid ([3H]AIB). Both endogenously and iron-generated LOOH, i.e., free fatty acid hydroperoxide (FFAOOH), phosphatidylethanolamine hydroperoxide (PEOOH), and phosphatidylcholine hydroperoxide (PCOOH), were measured directly by an HPLC-chemiluminescence (HPLC-CL) assay. The FFAOOH, PEOOH, and PCOOH levels in neurons incubated with 200 µM Fe2+ for 40 min were, respectively, 22-, 158-, and sevenfold higher than those in non-iron-exposed cultures, demonstrating that phosphatidylethanolamine (PE) was most sensitive to peroxidation. The dose-response and time course of Fe2+-induced generation of these LOOHs were also established. In both experiments, the LOOH levels were correlated directly with loss of neuronal viability, suggesting strongly a direct relationship between lipid peroxidation and cell injury. On examination of the time course of the LOOH generation, an immediate increase in PEOOH and PCOOH levels with only 30 s of Fe2+ incubation was observed. In contrast, a lag phase in the increase in FFAOOH level (2 min after Fe2+ addition) suggested a delay in the activation of phospholipase A2 (PLA2) required for the hydrolysis and generation of FFAOOH. This culture system provides an excellent model for screening antioxidant neuroprotective compounds with regard to their ability to protect against iron-dependent peroxidative injury and the relationship of the neuroprotection to inhibition of lipid peroxidation and/or PLA2.  相似文献   
89.
Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Thiamine deficiency impairs oxidative metabolism and causes metabolic encephalopathy. An early reduction in transketolase (TK) activity may be an important pathogenic event. To assess the role of TK, we have delineated the regional/cellular distribution of TK protein and mRNA in adult rat brain in pyrithiamine-induced thiamine deficiency. TK activity declined in both vulnerable and spared regions. Immunoblots showed a parallel reduction of TK protein. With a few exceptions, immunocytochemistry indicated an overall decline of TK immunoreactivity and the decrease was not specific to vulnerable areas. In contrast to the pronounced, general decline of TK protein, in situ hybridization revealed a regional decrease of 0–25% of TK mRNA in thiamine deficiency. Northern blots indicated a similar level of TK mRNA in whole brain in thiamine deficiency. These results show that the decline of TK activity results from a proportional decrease of TK protein, and the deficiency may be due to an instability of TK protein or an inhibition of TK mRNA translation. The lack of correlation of the distribution, and the absence of specific alteration, of TK in affected regions suggest that the reduced TK may not be linked directly to selective vulnerability in thiamine deficiency.  相似文献   
90.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号