首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14773篇
  免费   820篇
  国内免费   781篇
  2023年   247篇
  2022年   308篇
  2021年   545篇
  2020年   497篇
  2019年   716篇
  2018年   568篇
  2017年   353篇
  2016年   376篇
  2015年   516篇
  2014年   1080篇
  2013年   1160篇
  2012年   791篇
  2011年   976篇
  2010年   813篇
  2009年   669篇
  2008年   812篇
  2007年   765篇
  2006年   594篇
  2005年   556篇
  2004年   499篇
  2003年   399篇
  2002年   345篇
  2001年   195篇
  2000年   182篇
  1999年   194篇
  1998年   174篇
  1997年   147篇
  1996年   163篇
  1995年   173篇
  1994年   160篇
  1993年   101篇
  1992年   127篇
  1991年   89篇
  1990年   95篇
  1989年   82篇
  1988年   58篇
  1987年   56篇
  1986年   58篇
  1985年   81篇
  1984年   101篇
  1983年   91篇
  1982年   95篇
  1981年   54篇
  1980年   65篇
  1979年   55篇
  1978年   38篇
  1977年   36篇
  1976年   24篇
  1974年   21篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
991.
992.
We isolated RNAs by selection–amplification, selecting for affinity to Phe–Sepharose and elution with free l-phenylalanine. Constant sequences did not contain Phe condons or anticodons, to avoid any possible confounding influence on initially randomized sequences. We examined the eight most frequent Phe-binding RNAs for inclusion of coding triplets. Binding sites were defined by nucleotide conservation, protection, and interference data. Together these RNAs comprise 70% of the 105 sequenced RNAs. The K D for the strongest sites is ≈50 μM free amino acid, with strong stereoselectivity. One site strongly distinguishes free Phe from Trp and Tyr, a specificity not observed previously. In these eight Phe-binding RNAs, Phe codons are not significantly associated with Phe binding sites. However, among 21 characterized RNAs binding Phe, Tyr, Arg, and Ile, containing 1342 total nucleotides, codons are 2.7-fold more frequent within binding sites than in surrounding sequences in the same molecules. If triplets were not specifically related to binding sites, the probability of this distribution would be 4.8 × 10−11. Therefore, triplet concentration within amino acid binding sites taken together is highly likely. In binding sites for Arg, Tyr, and Ile cognate codons are overrepresented. Thus Arg, Tyr, and Ile may be amino acids whose codons were assigned during an era of direct RNA–amino acid affinity. In contrast, Phe codons arguably were assigned by another criterion, perhaps during later code evolution.  相似文献   
993.
994.
The origin and diversification of RNA secondary structure were traced using cladistic methods. Structural components were coded as polarized and ordered multi-state characters, following a model of character state transformation outlined by considerations in statistical mechanics. Several classes of functional RNA were analyzed, including ribosomal RNA (rRNA). Considerable phylogenetic signal was present in their secondary structure. The intrinsically rooted phylogenies reconstructed from evolved RNA structure depicted those derived from nucleic acid sequence at all taxonomical levels, and grouped organisms in concordance with traditional classification, especially in the archaeal and eukaryal domains. Natural selection appears therefore to operate early in the information flow that originates in sequence and ends in an adapted phenotype. When examining the hierarchical classification of the living world, phylogenetic analysis of secondary structure of the small and large rRNA subunits reconstructed a universal tree of life that branched in three monophyletic groups corresponding to Eucarya, Archaea, and Bacteria, and was rooted in the eukaryotic branch. Ribosomal characters involved in the translational cycle could be easily traced and showed that transfer RNA (tRNA) binding domains in the large rRNA subunit evolved concurrently with the rest of the rRNA molecule. Results suggest it is equally parsimonious to consider that ancestral unicellular eukaryotes or prokaryotes gave rise to all extant life forms and provide a rare insight into the early evolution of nucleic acid and protein biosynthesis. Received: 13 September 2000 / Accepted: 27 August 2001  相似文献   
995.
996.
997.
998.
For nearly 40 years functional studies of the mouse quaking gene (qkI) have focused on its role in the postnatal central nervous system during myelination. However, the homozygous lethality of a number of ENU-induced alleles reveals that quaking has a critical role in embryonic development prior to the start of myelination. In this article, we show that quaking has a previously unsuspected and essential role in blood vessel development. Interestingly, we found that quaking, a nonsecreted protein, is expressed in the yolk sac endoderm, adjacent to the mesodermal site of developing blood islands, where the differentiation of blood and endothelial cells first occurs. Antibodies against PE-CAM-1, TIE-2 and SM-alpha-actin reveal that embryos homozygous for the qk(k2) allele have defective yolk sac vascular remodeling and abnormal vessels in the embryo proper at midgestation, coinciding with the timing of embryonic death. However, these mutants exhibit normal expression of Nkx2.5 and alpha-sarcomeric actin, indicating that cardiac muscle differentiation was normal. Further, they had normal embryonic heart rates in culture, suggesting that cardiac function was not compromised at this stage of embryonic development. Together, these results suggest that quaking plays an essential role in vascular development and that the blood vessel defects are the cause of embryonic death.  相似文献   
999.
In a screen of nuclear genes that assist splicing of mitochondrial localized group II introns in yeast we isolated low-copy number suppressors of splicing and respiratory-deficient point mutants of intron aI5gamma, the last intron of the gene encoding cytochrome c oxidase subunit I. One of the genes found contains the open reading frame (ORF) YGL064c that has previously been proposed to encode a putative RNA helicase of the DEAD box family. Deletion of the ORF gives rise to 100% cytoplasmic petites, indicating that the protein plays an essential role in the mitochondrial RNA metabolism. Overexpression of YGL064c-GFP fusions clearly revealed a mitochondrial localization of the protein. The gene encodes the fourth putative RNA helicase of Saccharomyces cerevisiae implicated in a mitochondrial function and was therefore termed MRH4 (for mitochondrial RNA helicase).  相似文献   
1000.
In eukaryotic cells members of the kinesin family mediate intracellular transport by carrying cellular cargo on microtubule tracks. The nematode Caenorhabditis elegans genome encodes 21 members of the kinesin family, which show significant homology to their mammalian orthologs. Based on motor domain sequence homology and placement of the motor domain in the protein, the C. elegans kinesins have been placed in eight distinct groups; members of which participate in embryonic development, protein transport, synaptic membrane vesicles movement and in the axonal growth. Among 21 kinesins, at least 11 play a central role in spindle movement and chromosomal segregation. Understanding the function of C. elegans kinesins and related proteins may help navigate through the intricacies of intracellular traffic in a simple animal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号