首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   0篇
  2019年   3篇
  2018年   5篇
  2016年   2篇
  2014年   10篇
  2013年   4篇
  2012年   10篇
  2011年   14篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   13篇
  2004年   3篇
  2000年   1篇
  1990年   1篇
  1985年   3篇
  1983年   1篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
71.
We describe a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to quantify pentose phosphate pathway intermediates (triose-3-phosphates, tetrose-4-phosphate, pentose-5-phosphate, pentulose-5-phosphates, hexose-6-phosphates and sedoheptulose-7-phosphate (sed-7P)) in bloodspots, fibroblasts and lymphoblasts. Liquid chromatography was performed using an ion pair loaded C(18) HPLC column and detection of the sugar phosphates was carried out by tandem mass spectrometry using an electron ion spray source operating in the negative mode and multiple reaction monitoring. Reference values for the pentose phosphate pathway intermediates in blood spots, fibroblasts and lymphoblasts were established. The method was applied to cells from patients affected with a deficiency of transaldolase. The transaldolase-deficient cells showed an increased concentration of sedoheptulose-7-phosphate. (Bloodspots: 5.19 and 5.43 micromol/L [0.49-3.33 micromol/L]; fibroblasts 7.43 and 26.46 micromol/mg protein [0.31-1.14 micromol/mg protein]; lymphoblasts 16.03 micromol/mg protein [0.61-2.09 micromol/mg protein].) The method was also applied to study enzymes of the pentose phosphate pathway by incubating fibroblasts or lymphoblasts homogenates with ribose-5-phosphate or 6-phosphogluconate and the subsequent analysis of the formed sugar phosphates.  相似文献   
72.
Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A2 (hGX sPLA2) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA2-induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions.  相似文献   
73.
Phosphatidylinositol 3′-kinase (PI 3′-kinase) plays an important role in the migration of hepatocytes, endothelial cells and neoplastic cells to agonists which activate cellular tyrosine kinases. We examined the PI 3′-kinase-dependent chemotactic responses of neutrophilic leukocytes induced by phosphatidic acid (PA) in order to clarify mechanisms by which the enzyme potentially influences cellular migration. Western analysis of immunoprecipitates indicated that PA induced the tyrosine phosphorylation of three distinct proteins involved in functional activation which co-immunoprecipitated in PA-stimulated cells. These proteins were identified as lyn, syk and the 85 kDa regulatory subunit of PI 3′-kinase. Chemotactic responses to PA but not to several other neutrophil agonists were inhibited by the PI 3′-kinase inhibitors wortmannin and LY294002. Chemotactic inhibition resulted from upstream inhibition of calcium mobilization. Chelation of extracellular calcium by ethylene glycol-bis(β-aminoethyl ether) N,N,N′,N′-tetraacetic acid (EGTA) did not affect the PA-induced chemotaxis, whereas chelation of intracellular calcium by 1,2-bis(2-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA) attenuated this response. Thus, changes in intracellular Ca2+ levels that can be effected by Ca2+ mobilized from intracellular stores in the absence of Ca2+ influx regulate PA-induced chemotaxis. Furthermore, PI 3′-kinase inhibition blunted the agonist-dependent generation of inositol 1,4,5-trisphosphate (IP3), suggesting that PI 3′-kinase exerted its effects on calcium mobilization from intracellular sources by mediating activation of phospholipase C (PLC) in PA-stimulated cells. Moreover, the PI 3′-kinase inhibitor LY294002 also inhibited phosphorylation of syk in PA-stimulated cells. We, therefore, propose that products of PI 3′-kinase confined to the inner leaflet of the plasma membrane play a role in activation of syk, calcium mobilization and induction of chemotactic migration.  相似文献   
74.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   
75.
The cell permeability of hesperetin and hesperidin, anti-allergic compounds from citrus fruits, was measured using Caco-2 monolayers. In the presence of a proton gradient, hesperetin permeated cells in the apical-to-basolateral direction at the rate (Jap → bl) of 10.43 ± 0.78 nmol/min/mg protein, which was more than 400-fold higher than that of hesperidin (0.023 ± 0.008 nmol/min/mg protein). The transepithelial flux of hesperidin, both in the presence or absence of a proton gradient, was nearly the same and was inversely correlated with the transepithelial electrical resistance (TER), indicating that the transport of hesperidin was mainly via paracellular diffusion. In contrast, the transepithelial flux of hesperetin was almost constant irrespective of the TER. Apically loaded NaN3 or carbonyl cyanide m-chlorophenylhydrazone (CCCP) decreased the Jap → bl of hesperetin, in the presence of proton gradient, by one-half. In the absence of a proton gradient, both Jap → bl and Jbl → ap of hesperetin were almost the same (5.75 ± 0.40 and 5.16 ± 0.73 nmol/min/mg protein). Jbl → ap of hesperetin in the presence of a proton gradient was lower than Jbl → ap in the absence of a proton gradient. Furthermore, Jbl → ap in the presence of a proton gradient remarkably increased upon addition of NaN3 specifically to the apical side. These results indicate that hesperetin is absorbed by transcellular transport, which occurs mainly via proton-coupled active transport, and passive diffusion. Thus, hesperetin is efficiently absorbed from the intestine, whereas hesperidin is poorly transported via the paracellular pathway and its transport is highly dependent on conversion to hesperetin via the hydrolytic action of microflora. We have given novel insight to the absorption characteristics of hesperetin, that is proton-coupled and energy-dependent polarized transport.  相似文献   
76.
We examined the effects of tick SGx and saliva on basal- and platelet-derived growth factor (PDGF)-stimulated cell migration and extracellular signal-regulated kinase (ERK) signaling in fibroblasts. Repair of injured monolayers was delayed by SGx pretreatment and was not associated with reductions in cell number. In migration assays, SGx suppressed both basal- and PDGF-stimulated fibroblast movement. Furthermore, SGx and saliva reduced PDGF-stimulated ERK activity. Thus, the delayed repair of monolayer injuries resulted from SGx inhibiting fibroblast migratory responses to chemotactic signals. SGx also suppressed injury- and growth factor-induced ERK activation in renal epithelial OK cells. Our data suggest that maintenance of the tick feeding lesion results, in part, from suppressing ERK signaling and fibroblast migration, events playing integral roles in the wound healing response. The effects of SGx on cells not involved in wound healing suggest that a constituent(s) in tick saliva has global effects on the ERK signaling pathway.  相似文献   
77.
We examined the potential role of fibronectin in chemotactic factor stimulation of neutrophil adherence to plastic. Monoclonal antibody to human fibronectin significantly reduced chemotactic peptide stimulation of adherence but did not reduce adherence stimulated by phorbol myristate acetate or aggregation stimulated by either agent. Stimulation of neutrophils by chemotactic peptide was also associated with loss of cell surface fibronectin detected by immunofluorescence or binding of radiolabeled collagen. These data suggest that chemotactic peptides stimulate neutrophils to release Fn and that Fn mediates the attachment of neutrophils to plastic surfaces.  相似文献   
78.
Inhibition of post-replication repair by isonicotinic acid hydrazide   总被引:1,自引:0,他引:1  
In the presence of the alkylating mutagen N-methyl-N-nitrosourea (MNU), the well-known tuberculostatic ionicotinic acid hydrazide (INH), even in otherwise ineffective doses, depressed cell number and mitotic index in peripheral human lymphocytes and inhibited the post-replication repair process in Chinese hamster cells (CHO). INH had no influence on unscheduled DNA synthesis (cut-and-patch repair), which was negligible in CHO cells under our conditions.  相似文献   
79.
AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号