首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1878篇
  免费   58篇
  国内免费   46篇
  2023年   6篇
  2022年   8篇
  2021年   22篇
  2020年   14篇
  2019年   22篇
  2018年   15篇
  2017年   18篇
  2016年   25篇
  2015年   20篇
  2014年   35篇
  2013年   65篇
  2012年   46篇
  2011年   44篇
  2010年   30篇
  2009年   46篇
  2008年   54篇
  2007年   64篇
  2006年   69篇
  2005年   51篇
  2004年   77篇
  2003年   68篇
  2002年   44篇
  2001年   55篇
  2000年   38篇
  1999年   39篇
  1998年   63篇
  1997年   86篇
  1996年   66篇
  1995年   58篇
  1994年   59篇
  1993年   63篇
  1992年   58篇
  1991年   68篇
  1990年   66篇
  1989年   54篇
  1988年   68篇
  1987年   41篇
  1986年   55篇
  1985年   48篇
  1984年   44篇
  1983年   23篇
  1982年   25篇
  1981年   23篇
  1980年   12篇
  1979年   11篇
  1978年   5篇
  1976年   1篇
  1975年   4篇
  1974年   3篇
  1972年   1篇
排序方式: 共有1982条查询结果,搜索用时 15 毫秒
971.
Summary. Nodulins encoding repetitive proline-rich cell wall proteins (PRPs) are induced during early interactions with rhizobia, suggesting a massive restructuring of the plant extracellular matrix during infection and nodulation. However, the proteins corresponding to these gene products have not been isolated or characterized, nor have cell wall localizations been confirmed. Posttranslational modifications, conformation, and interactions with other wall polymers are difficult to predict on the basis of only the deduced amino acid sequence of PRPs. PsENOD2 is expressed in nodule parenchyma tissue during nodule organogenesis and encodes a protein with distinctive PRP motifs that are rich in glutamate and basic amino acids. A database search for the ENOD2 signature motifs indicates that similar proteins may have a limited phylogenetic distribution, as they are presently only known from legumes. To determine the ultrastructural location of the proteins, antibodies were raised against unique motifs from the predicted ENOD2 sequence. The antibodies recognized nodule-specific proteins in pea (Pisum sativum), with a major band detected at 110 kDa, representing a subset of PRPs from nodules. The protein was detected specifically in organelles of the secretory pathway and intercellular spaces in the nodule parenchyma, but it was not abundant in primary walls. Similar proteins with an analogous distribution were detected in soybean (Glycine max). The use of polyclonal antibodies raised against signature motifs of extracellular matrix proteins thus appears to be an effective strategy to identify and isolate specific structural proteins for functional analysis. Correspondence and reprints: Delaware Biotechnology Institute, Newark, DE 19711, U.S.A.  相似文献   
972.
Supernodulation in soybean (Glycine max L. Merr.) is an important source of nitrogen supply to subterranean ecological systems. Single nucleotide-amplified polymorphism (SNAP) markers for supernodulation should allow rapid screening of the trait in early growth stages, without the need for inoculation and phenotyping. The gene GmNARK (Glycine max nodule autoregulation receptor kinase), controlling autoregulation of nodulation, was found to have a single nucleotide polymorphism (SNP) between the wild-type cultivar Sinpaldalkong 2 and its supernodulating mutant, SS2-2. Transversion of A to T at the 959-bp position of the GmNARK sequence results in a change of lysine (AAG) to a stop codon (TAG), thus terminating its translation in SS2-2. Based on the identified SNP in GmNARK, five primer pairs specific to each allele were designed using the WebSnaper program to develop a SNAP marker for supernodulation. One A-specific primer pair produced a band present in only Sinpaldalkong 2, while two T-specific pairs showed a band in only SS2-2. Both complementary PCRs, using each allele-specific primer pair were performed to genotype supernodulation against F2 progeny of Sinpaldalkong 2 × SS2-2. Among 28 individuals with the normal phenotype, eight individuals having only the A-allele-specific band were homozygous and normal, while 20 individuals were found to be heterozygous at the SNP having both A and T bands. Twelve supernodulating individuals showed only the band specific to the T allele. This SNAP marker for supernodulation could easily be analyzed through simple PCR and agarose gel electrophoresis. Therefore, use of this SNAP marker might be faster, cheaper, and more reproducible than using other genotyping methods, such as a cleaved amplified polymorphic sequence marker, which demand of restriction enzymes.  相似文献   
973.
The sequence of Bcl-2 homology domains, BH1 and BH2, is known to be conserved among anti- and pro-apoptotic members of Bcl-2 family proteins. But structural conservation of these domains with respect to functionally active residues playing role in heterodimerization-mediated regulation of apoptosis has never been elucidated. Here, we have suggested the formation of an active site by structurally conserved residues in BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-2 family members, which also accounts for the functional effect of known mutations in BH1 (G145A, G145E) and BH2 (W188A) domains of Bcl-2.  相似文献   
974.
Nucleolin is a major nucleolar phosphoprotein of exponentially growing eukaryotic cells. Here we report the cloning, purification, and characterization of the C-terminal glycine/arginine-rich (GAR) domain of pea nucleolin. The purified recombinant protein (17 kDa) shows ATP-/Mg(2+)-dependent DNA helicase and ssDNA-/Mg(2+)-dependent ATPase activities. The enzyme unwinds DNA in the 5'- to 3'-direction, which is the first report in plant for this directional activity. It unwinds forked/non-forked DNA with equal efficiency. The anti-nucleolin antibodies immunodepleted the activities of the enzyme. The DNA interacting ligands nogalamycin, daunorubicin, actinomycin C1, and ethidium bromide were inhibitory to DNA unwinding (with K(i) values of 0.40, 2.21, 8.0, and 9.0 microM, respectively) and ATPase (with K(i) values of 0.43, 1.65, 4.6, and 7.0 microM, respectively) activities of the enzyme. This study confirms that the unwinding and ATPase activities of pea nucleolin resided in the GAR domain. This study should make important contribution to our better understanding of DNA transaction in plants, mechanism of DNA unwinding, and the mechanism by which these ligands can disturb genome integrity.  相似文献   
975.
The effect of Cd (10, 100, and 200 M) on tissue contents of macronutrients (N, P, K, Ca, Mg) and micronutrients (Fe, Zn, Cu, Mn) was investigated in hydroponically grown soybean (Glycine max) seedlings. Concentration changes of analysed elements observed against increasing Cd accumulation indicated that acute Cd-phytotoxic effect monitored through chlorophyll content was not a consequence of nutrient deficiency.  相似文献   
976.
The phenotype variety caused by glycine substitutions in alpha5(IV) chain in X-linked Alport syndrome (XLAS) prompted the complexity of structure changes of alpha5(IV) chain that was little to know now. In this study, we expressed a domain of alpha5(IV) chain containing different glycine substitutions (G1015V and G1030S, respectively) which were revealed in two XLAS pedigrees with different phenotype severities and the corresponding domain of a control in Escherichia coli. The recombinant proteins were characterized by immunoblot and mass spectrometry and analyzed the secondary structure by using circular dichroism (CD) spectroscopy. CD analysis showed that the recombinant protein containing G1015V mutation identified in the pedigree of juvenile-onset XLAS exhibited 12.9% alpha-helix that was not found in the control recombinant protein. The spectrum of the recombinant protein containing G1030S mutation identified in the pedigree of adult-onset XLAS was slightly different from that of the control, that is, mostly with the random coil and the beta-sheet, while without alpha-helix. These results demonstrated that two kinds of glycine substitutions, although in the same domain of alpha5(IV) chain, displayed the distinctly different secondary structures. The changes of the secondary structure could explain the phenotypic diversities of XLAS, which would be hardly understood solely by analyzing genomic DNA or mRNA of alpha5(IV) chain.  相似文献   
977.
Forced vital capacity (FVC) and maximal exercise response were measured in two populations of Peruvian males (age, 18-35 years) at 4,338 m who differed by the environment in which they were born and raised, i.e., high altitude (Cerro de Pasco, Peru, BHA, n = 39) and sea level (Lima, Peru, BSL, n = 32). BSL subjects were transported from sea level to 4,338 m, and were evaluated within 24 hr of exposure to hypobaric hypoxia. Individual admixture level (ADMIX, % Spanish ancestry) was estimated for each subject, using 22 ancestry-informative genetic markers and also by skin reflectance measurement (MEL). Birthplace accounted for the approximately 10% larger FVC (P < 0.001), approximately 15% higher maximal oxygen consumption (VO(2)max, ml.min(-1).kg(-1)) (P < 0.001), and approximately 5% higher arterial oxygen saturation during exercise (SpO(2)) (P < 0.001) of BHA subjects. ADMIX was low in both study groups, averaging 9.5 +/- 2.6% and 2.1 +/- 0.3% in BSL and BHA subjects, respectively. Mean underarm MEL was significantly higher in the BSL group (P < 0.001), despite higher ADMIX. ADMIX was not associated with any study phenotype, but study power was not sufficient to evaluate hypotheses of genetic adaptation via the ADMIX variable. MEL and FVC were positively correlated in the BHA (P = 0.035) but not BSL (P = 0.335) subjects. However, MEL and ADMIX were not correlated across the entire study sample (P = 0.282). In summary, results from this study emphasize the importance of developmental adaptation to high altitude. While the MEL-FVC correlation may reflect genetic adaptation to high altitude, study results suggest that alternate (environmental) explanations be considered.  相似文献   
978.
Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation rate, soybean has to open its stomata more widely to keep small stomatal resistance, as compared with maize.  相似文献   
979.
BACKGROUND AND AIMS: Carbon gain depends on efficient photosynthesis and adequate respiration. The effect of temperature on photosynthetic efficiency is well understood. In contrast, the temperature response of respiration is based almost entirely on short-term (hours) measurements in mature organisms to develop Q(10) values for maintenance and whole-plant respiration. These Q(10) values are then used to extrapolate across whole life cycles to predict the influence of temperature on plant growth. METHODS: In this study, night temperature in young, rapidly growing plant communities was altered from 17 to 34 degrees C for up to 20 d. Day temperature was maintained at 25 degrees C. CO(2) gas-exchange was continuously monitored in ten separate chambers to quantify the effect of night-temperature on respiration, photosynthesis and the efficiency of carbon gain (carbon use efficiency). KEY RESULTS: Respiration increased only 20-46 % for each 10 degrees C rise in temperature (total respiratory Q(10) of between 1.2 to about 1.5). This change resulted in only a 2-12 % change in carbon use efficiency, and there was no effect on cumulative carbon gain or dry mass. No acclimation of respiration was observed after 20 d of treatment. CONCLUSIONS: These findings indicate that whole-plant respiration of rapidly growing plants has a small sensitivity to temperature, and that the sensitivity does not change among the species tested, even after 20 d of treatment. Finally, the results support respiration models that separate respiration into growth and maintenance components.  相似文献   
980.
Bunce JA 《Annals of botany》2004,93(6):665-669
BACKGROUND AND AIMS: Respiration of autotrophs is an important component of their carbon balance as well as the global carbon dioxide budget. How autotrophic respiration may respond to increasing carbon dioxide concentrations, [CO(2)], in the atmosphere remains uncertain. The existence of short-term responses of respiration rates of plant leaves to [CO(2)] is controversial. Short-term responses of respiration to temperature are not disputed. This work compared responses of dark respiration and two processes dependent on the energy and reductant supplied by dark respiration, translocation and nitrate reduction, to changes in [CO(2)] and temperature. METHODS: Mature soybean leaves were exposed for a single 8-h dark period to one of five combinations of air temperature and [CO(2)], and rates of respiration, translocation and nitrate reduction were determined for each treatment. KEY RESULTS: Low temperature and elevated [CO(2)] reduced rates of respiration, translocation and nitrate reduction, while increased temperature and low [CO(2)] increased rates of all three processes. A given change in the rate of respiration was accompanied by the same change in the rate of translocation or nitrate reduction, regardless of whether the altered respiration was caused by a change in temperature or by a change in [CO(2)]. CONCLUSIONS: These results make it highly unlikely that the observed responses of respiration rate to [CO(2)] were artefacts due to errors in the measurement of carbon dioxide exchange rates in this case, and indicate that elevated [CO(2)] at night can affect translocation and nitrate reduction through its effect on respiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号