首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   9篇
  2008年   4篇
  2007年   11篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
21.
Phytochrome B-deficient plants exhibit increased gibberellin (GA) levels or responsiveness, which may contribute to their elongated growth and reduced chlorophyll levels. We have investigated the effects of applications of gibberellic acid and an inhibitor of gibberellin biosynthesis, ancymidol, on wild-type and phytochrome B-antisense potato (Solanum tuberosum ssp. andigena) plants. The results showed that some phenotypes of the phytochrome B-antisense plants, i.e. increased stem length and reduced chlorophyll, can be mimicked by treating wild-type plants with gibberellic acid. However, another phenotype, i.e. tuberisation response in long days, is mimicked by application of a GA biosynthesis inhibitor ancymidol, thus appearing to be the result of a reduction in the gibberellin levels. A simple increase in gibberellin levels or sensitivity is, therefore, not sufficient to explain the phenotype of the antisense plants.  相似文献   
22.
Significant male and female flowering (cone bud production) by girdled branches of 6-year-old Douglas fir (Pseudotsuga menziesii (Mirb. Franco) seedlings was promoted by applications (mid-April to June) of 1.6 or 3.2 mg per branch (in total) of certain non-polar gibberellins (GA's). Girdling alone was ineffective. When tested alone, a mixture of GA4/7 was most effective. GA9 less so, while GA5 and the more polar GA3 were essentially ineffective. For female cone buds GA4/7+ GA9 were synergistically effective, but for male cone buds GA4/7 alone was best. The auxin naphthaleneacetic acid (NAA) was not tested alone, but at low dosage (0.175 mg/branch in total) NAA enhanced the flowering efficacy of GA's for both sexes; at a high dosage (0.875 mg/branch in total) male cone bud production was further enhanced, but only at the expense of females. For female flowering the best treatment (90% frequency of flowering 6.8 cone buds/branch), was GA4/7+ GA9+ low NAA; for male flowering, it was GA4/7+ high NAA (30% frequency and 4.2 cone buds/branch. Frequency of flowering for controls was 18% and 0%, average number of cone buds/branch was 0.9 and 0, for females and males, respectively. The successful treatments did not affect promordia initiation, rather they caused the differentiation of previously initiated, but undetermined, lateral primordia into cone and latent buds at the expense of vegetative bud differentiation. The lack of success reported by earlier workers in promoting flowering in Pinaceae species by GA's appears to be the unfortunate result of selecting GA3 for initial testing. The practical implications of this early and enhanced flowering by non-polar GA's seedlings of a commercially important conifer are discussed in relation to accelerating the processes of tree improvement.  相似文献   
23.
A series of gibberellin based molecules were designed and synthesized. Gibberellin derivatives bearing two α,β-unsaturated ketone units showed strong anticancer activities in MTT assay towards a number of human cancer cell lines including HT29, A549, HepG2 and MKN28. The most potent gibberellin derivative (compound 10, IC50 = 2.9 μM against HT29) inhibited completely the topoisomerase I activity at 8 μg/mL level.  相似文献   
24.
Recent studies suggest that hormones act through a web of interacting responses rather than through isolated linear pathways. This signal integration architecture may be one mechanism for increasing the specificity of outcomes in different cellular contexts. Several common themes for cross-regulation between pathways can be observed. Here, we propose a classification scheme for different levels of signaling pathway cross-regulation. This scheme is based on which parts of the individual pathways are acting as information conduits between pathways. Examples from the recent plant hormone biology literature are used to illustrate the different modes of interaction. K. T. Kuppusamy and C. L. Walcher—co-first-authors.  相似文献   
25.
The effect of applied gibberellin (GA) and auxin on fruit-set and growth has been investigated in tomato (Solanum lycopersicum L.) cv Micro-Tom. It was found that to prevent competition between developing fruits only one fruit per truss should be left on the plant. Unpollinated ovaries responded to GA3 and to different auxins [indol-3-acetic acid, naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid (2,4-D)], 2,4-D being the most efficient. GA3- and 2,4-D-induced fruits had different internal morphology, with poor locular tissue development in the case of GA, and pseudoembryos development in the case of 2,4-D. Also, GA3 produced larger cells in the internal region of the mesocarp (IM) associated with higher mean C values, whereas 2,4-D produced more cell layers in the pericarp than pollinated fruits. The smaller size of GA3- compared with 2,4-D-induced fruits was due to them having fewer cells, only partially compensated by the larger size of IM cells. Simultaneous application of GA3 and 2,4-D produced parthenocarpic fruits similar to pollinated fruits, but for the absence of seeds, suggesting that both kinds of hormones are involved in the induction of fruit development upon pollination. It is concluded that Micro-Tom constitutes a convenient model system, compared to tall cultivars, to investigate the hormonal regulation of fruit development in tomato.  相似文献   
26.
The effect of gibberellic acid (GA3) on the carbohydrate accumulation in relation to vegetative growth of Zantedeschia ‘Black Magic’ plants undergoing transition to flowering was investigated. In response to GA treatment the carbohydrate level increased independently of earlier stimulation of shoot emergence. Under vegetative growth stage the content of reducing sugars of leaf blades was 2.5-fold higher than in control plants, and suggests the stimulation of photosynthetic activity. The changes observed during the flowering, in principle noted in petiole tissues, support the GA-effect on assimilate transport to the sink organs. Moreover, the high level of non-structural carbohydrates in petiole tissues, in particular reducing sugars, can be an effect of photosynthetic activity of these organs and/or essential for osmoregulation and high turgor pressure. The results indicate that apart from the influence on the shoot emergence, the GAs may stimulate the photosynthetic activity from the beginning of shoot growth and are thus responsible for the enhancement of callas flower yield.  相似文献   
27.
GA 20-oxidase is a key enzyme involved in gibberellin (GA) biosynthesis. In tomato, the GA 20-oxidase gene family consists of three members: GA20ox1, GA20ox2, and GA20ox3. To investigate the roles of these three genes in regulating plant growth and development, we used RNA interference technology to generate three kinds of transgenic tomato plants with suppressed expression of each three individual genes. Suppression of GA20ox1 or GA20ox2 resulted in shorter stems, a decreased length of internodes, and small dark green leaves while plants with decreased expression of GA20ox3 had no visible changes on stems and leaves. The plants of the three transgenic lines can flower and set fruits normally, but the seeds from these plants germinated slower than that from the normal plants. Decreased levels of endogenous GAs were detected in the apex of the three transgenic lines. These results demonstrate that the three GA 20-oxidase genes play different roles in the control of plan vegetative growth, but show no effects on flower and fruit development.Equal contribution authors: J. Xiao and H. Li.  相似文献   
28.
Inferior spikelets usually exhibit a slower grain filling rate and lower grain weight than superior spikelets in a rice (Oryza sativa L.) panicle. This study investigated whether the variations in grain filling between the two kinds of spikelets were attributed to their sink strength and whether the sink strength was regulated by the hormonal levels in the grains. Using two field-grown rice genotypes, the division rate of endosperm cells, hormonal levels in the grains, and grain weight of both superior and inferior spikelets were determined during the grain filling period. The results showed that superior spikelets had dominance over inferior spikelets in endosperm cell division rate and cell number, grain filling and grain weight. Changes in zeatin (Z) and zeatin riboside (ZR) contents paralleled and were very significantly correlated with the cell division rate and cell number. Cell division rate and the content of indole-3-acetic acid (IAA) in the grains were also significantly correlated. Gibberellin (GAs; GA1+ GA4) content of the grains was high but ABA levels were low at the early grain filling stage. ABA increased substantially during the linear phase of grain growth and was very significantly correlated with grain dry weight during this period. Application of kinetin at 2 through 6 days post anthesis (DPA) significantly increased cell number, while spraying ABA at 11 through 15 DPA significantly increased the grain filling rate. The results suggest that differences in sink strength are responsible for variations in grain filling between superior and inferior spikelets. Both cytokinins and IAA in the grains may mediate cell division in rice endosperm at early grain filling stages, and therefore regulate the sink size of the grain, whereas ABA content correlates with sink activity during the linear period of grain growth.  相似文献   
29.
Elevengibberellins (GAs) were identified and quantified in extracts of leaves andtubers of the Chinese yam, Dioscorea opposita Thunb. cv.Tsukune by GC-MS-SIM and Kovats retention indices. Five of these gibberellinsare members of the early-13-hydroxylation pathway (GA53,GA44, GA19, GA20 and GA1), and sixare members of the non-13-hydroxylation pathway (GA12,GA15, GA24, GA9, GA36 andGA4). Of these eleven, GA44, GA15 andGA1 were detected for the first time in Dioscoreaopposita leaf tissues. The major biosynthetic GA pathway in leavesofChinese yam was non C-13 hydroxylation (NCH). In addition, the activeGA4 content for all harvest dates was greater than that ofGA1 in the leaves and tubers during tuber development. It issuggested that the higher level of GA4 in the leaves and tubers maybe closely related to tuber enlargement.  相似文献   
30.
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source–sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号