首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13786篇
  免费   467篇
  国内免费   733篇
  2024年   8篇
  2023年   139篇
  2022年   164篇
  2021年   245篇
  2020年   209篇
  2019年   283篇
  2018年   259篇
  2017年   206篇
  2016年   240篇
  2015年   454篇
  2014年   890篇
  2013年   785篇
  2012年   694篇
  2011年   973篇
  2010年   749篇
  2009年   721篇
  2008年   747篇
  2007年   824篇
  2006年   731篇
  2005年   654篇
  2004年   584篇
  2003年   516篇
  2002年   335篇
  2001年   229篇
  2000年   287篇
  1999年   330篇
  1998年   303篇
  1997年   263篇
  1996年   238篇
  1995年   276篇
  1994年   252篇
  1993年   213篇
  1992年   191篇
  1991年   174篇
  1990年   127篇
  1989年   133篇
  1988年   121篇
  1987年   115篇
  1986年   84篇
  1985年   49篇
  1984年   46篇
  1983年   31篇
  1982年   33篇
  1981年   23篇
  1980年   8篇
  1979年   13篇
  1978年   14篇
  1976年   6篇
  1973年   5篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This paper is concerned with gene survival in a population which may increase without density dependence according to a generalization of the Moran model for haploid individuals. A selective advantage to one allele and the possibility of differential reproductive rates are allowed. Simple conditions are given for ultimate homozygosity to be certain and for the possibility of ultimate polymorphism. The results complement and extend those of Heyde (1981, 1982).  相似文献   
2.
Abstract Analysis of the Salmonella chromosomal region located upstream of the fimA gene (coding for the major type 1 fimbrial subunit) showed a close linkage of this gene to the folD gene (coding for the enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5, 10-methenyltetrahydrofolate cyclohydrolase), indicating that the fim gene cluster of Salmonella , unlike that of Escherichia coli , has no regulatory genes located upstream of fimA and apparently terminates with this gene. The respective locations of the fim and folD genes in the E. coli and Salmonella genetic maps suggests that the fimA-folD intergenic region of Salmonella encompasses a junctional site of a genetic rearrangement that probably originated from the different chromosomal location of the fim genes in these species.  相似文献   
3.
In this work, incorporation of plasmid DNA, pre-complexed with PEI, into polyelectrolyte multilayers has been studied to further develop platforms for local gene delivery. Polyplex embedding in synthetic and naturally degradable architectures was efficient for transfection of human hepato-cellular carcinoma cells.  相似文献   
4.
It has been proposed that amplification of genes for esterase that provide resistance to insecticides may originate from transposition events. To test this hypothesis, we have constructed a minigene coding for a soluble acetylcholinesterase under the control of a nontissue-specific promoter (hsp70). When introduced into Drosophila, the gene is expressed in all tissues and the extra acetylcholinesterase produced confers a low level of insecticide resistance (twofold). The minigene was mobilized by crossing the initial transformant with a strain providing a source of P-element transposase. After 34 generations of exposure to the organophosphate parathion, we obtained a strain with a higher resistance (fivefold). This strain had only one extra Ace gene, which overexpressed acetylcholinesterase. Thus, following transposition, resistance resulted from the overexpression of a single copy of the gene and not from gene amplification. Received: 9 August 1996 / Accepted: 27 May 1997  相似文献   
5.
Abstract The genes encoding the CryIVB and CryIVD crystal polypeptides of B. thuringiensis subsp. israelensis were cloned indepently on a stable shuttle vector, and transfered into B. sphaericus 2297. Recombinant cells expressed the B. thuringiensis toxins during sporulation and were shown to be toxic to Aedes aegypti fourth instar larvae, whereas the parental strain was not.  相似文献   
6.
7.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
8.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.  相似文献   
9.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
10.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号