首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6306篇
  免费   348篇
  国内免费   36篇
  2023年   200篇
  2022年   163篇
  2021年   217篇
  2020年   204篇
  2019年   342篇
  2018年   273篇
  2017年   258篇
  2016年   191篇
  2015年   267篇
  2014年   602篇
  2013年   613篇
  2012年   485篇
  2011年   508篇
  2010年   395篇
  2009年   259篇
  2008年   203篇
  2007年   238篇
  2006年   188篇
  2005年   156篇
  2004年   153篇
  2003年   96篇
  2002年   68篇
  2001年   47篇
  2000年   33篇
  1999年   33篇
  1998年   38篇
  1997年   31篇
  1996年   21篇
  1995年   28篇
  1994年   26篇
  1993年   22篇
  1992年   14篇
  1991年   21篇
  1990年   8篇
  1989年   11篇
  1988年   9篇
  1987年   9篇
  1986年   6篇
  1985年   16篇
  1984年   41篇
  1983年   23篇
  1982年   28篇
  1981年   23篇
  1980年   20篇
  1979年   20篇
  1978年   12篇
  1977年   15篇
  1976年   16篇
  1975年   19篇
  1973年   9篇
排序方式: 共有6690条查询结果,搜索用时 31 毫秒
991.
Gastric cancer is a worldwide health burden, which is still the second most common cause of cancer related deaths with little improvement of long-term survival during the past decades. Understanding the molecular nature of this disease and its precursor lesions has been under intense investigation and our review attempts to highlight recent progress in this field of cancer research. First, host-related genetic susceptibility is dealt with genes involved in inflammation and carcinogen metabolism. Next, role of overexpression of a proinflammatory cytokine (interleukin-1beta) and deletion of a cell-cell adhesion molecule (E-cadherin) are described in experimental mouse models of gastric carcinogenesis. Finally, the role of stem cells in gastric cancer is covered.  相似文献   
992.
Cell lineage commitment and differentiation are governed by a complex gene regulatory network. Disruption of these processes by inappropriate regulatory signals and by mutational rewiring of the network can lead to tumorigenesis. Cancer cells often exhibit immature or embryonic traits and dysregulated developmental genes can act as oncogenes. However, the prevailing paradigm of somatic evolution and multi-step tumorigenesis, while useful in many instances, offers no logically coherent reason for why oncogenesis recapitulates ontogenesis. The formal concept of “cancer attractors”, derived from an integrative, complex systems approach to gene regulatory network may provide a natural explanation. Here we present the theory of attractors in gene network dynamics and review the concept of cell types as attractors. We argue that cancer cells are trapped in abnormal attractors and discuss this concept in the light of recent ideas in cancer biology, including cancer genomics and cancer stem cells, as well as the implications for differentiation therapy.  相似文献   
993.
In the nineteenth century, William B. Coley induced durable remission of inoperable metastatic sarcoma by repeatedly injecting live streptococcus bacilli and, subsequently, heat-killed bacterial extracts into the primary tumor. While Coley's contemporaries debated the veracity of his results, this bold treatment protocol established the new scientific field of immunology. In Coley's era, the scientific and medical communities lacked the prerequisite knowledge to validate and understand his treatment protocols. Today, a more comprehensive understanding of the human immune system, anchored by the discovery of the mammalian Toll-like receptor gene family in the 1990s, permits a mechanistic understanding of his results. Coley's cocktail of TLR agonists likely stimulated a complex cascade of cytokines, each of which plays a unique and vital role in the orchestration of the immune response. Here we explore Coley's legacy: a dissection of those cytokines which possess the immunostimulatory properties necessary to modulate the immune system and ameliorate human disease. The discussion is limited to molecules that have been able to show therapeutic promise in the clinical setting.  相似文献   
994.
Cellular senescence is a potent anti-cancer mechanism controlled by tumor suppressor genes, particularly p53 and pRb, which is characterized by the irreversible loss of proliferation. Senescence induced by DNA damage, oncogenic stimulation, or excessive mitogenic input, serves as a barrier that counteracts cancer progression. Emerging evidence in cellular and in in vivo models revealed the involvement of additional signaling players in senescence, including PML, CK2, Bcl-2, PI3K effectors such as Rheb, Rho small GTPases, and cytokines. Recent studies have also implicated protein kinase C (PKC) isozymes as modulators of senescence phenotypes and showed that phorbol esters, widely used PKC activators, can induce senescence in a number of cancer cells. These novel findings suggest a complex array of cross-talks between senescence pathways and may have significant implications in cancer therapy.  相似文献   
995.
Autophagy is a cellular self-catabolic process in which cytoplasmic constituents are sequestered in double membrane vesicles that fuse with lysosomes where they are degraded. As this catabolic activity generates energy, autophagy is often induced under nutrient limiting conditions providing a mechanism to maintain cell viability and may be exploited by cancer cells for survival under metabolic stress. However, progressive autophagy can be cytotoxic and autophagy can under certain settings substitute for apoptosis in induction of cell death. Moreover, loss of autophagy is correlated with tumorigenesis and several inducers of autophagy are tumor-suppressor genes. Thus, the relation of autophagy to cancer development is complex and depends on the genetic composition of the cell as well as on the extra-cellular stresses a cell is exposed to. In this review we describe the intricate nature of autophagy and its regulators, particularly those that have been linked to cancer. We discuss the multifaceted relation of autophagy to tumorigenesis and highlight studies supporting a role for autophagy in both tumor-suppression and tumor-progression. Finally, various autophagy-targeting therapeutic strategies for cancer treatment are presented. This review is dedicated to the memory of Dr. Avner Eisenberg 1953–2004.  相似文献   
996.
Epstein-Barr virus (EBV) is a ubiquitous virus with infections commonly resulting in a latency carrier state. Although the exact role of EBV in cancer pathogenesis remains not entirely clear, it is highly probable that it causes several lymphoid and epithelial malignancies, such as Hodgkin’s lymphoma, NK-T cell lymphoma, Burkitt’s lymphoma, and nasopharyngeal carcinoma. EBV-associated malignancies are associated with a latent form of infection, and several of these EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins. Studies have shown that EBV displays distinct patterns of viral latent gene expression in these lymphoid and epithelial tumors. The constant expression of latent membrane protein 2A (LMP2A) at the RNA level in both primary and metastatic tumors suggests that this protein might be a driving factor in the tumorigenesis of EBV-associated malignancies. LMP2A may cooperate with the aberrant host genome, and thereby contribute to malignant transformation by intervening in signaling pathways at multiple points, especially in the cell cycle and apoptotic pathway. This review summarizes the role of EBV-encoded LMP2A in EBV-associated viral latency and cancers. We will focus our discussions on the molecular interactions of each of the conserved motifs in LMP2A, and their involvement in various signaling pathways, namely the B-cell receptor blockade mechanism, the ubiquitin-mediated (Notch and Wnt) pathways, and the MAPK, PI3-K/Akt, NK-κB and STAT pathways, which can provide us with important insights into the roles of LMP2A in the EBV-associated latency state and various malignancies.  相似文献   
997.
998.
Aldehyde dehydrogenase 1 (ALDH1) has been considered to be a marker for cancer stem cells. However, the role of ALDH1 in head and neck squamous cell carcinoma (HNSCC) has yet to be determined. In this study, we isolated ALDH1-positive cells from HNSCC patients and showed that these HNSCC-ALDH1+ cells displayed radioresistance and represented a reservoir for generating tumors. Based on microarray findings, the results of Western blotting and immunofluorescent assays further confirmed that ALDH1+-lineage cells showed evidence of having epithelial-mesenchymal transition (EMT) shifting and endogenously co-expressed Snail. Furthermore, the knockdown of Snail expression significantly decreased the expression of ALDH1, inhibited cancer stem-like properties, and blocked the tumorigenic abilities of CD44+CD24ALDH1+ cells. Finally, in a xenotransplanted tumorigenicity study, we confirmed that the treatment effect of chemoradiotherapy for ALDH1+ could be improved by Snail siRNA. In summary, it is likely that ALDH1 is a specific marker for the cancer stem-like cells of HNSCC.  相似文献   
999.
This study was aimed at exploring a novel pretargeting system based upon bifunctional nucleic acid molecules that are comprised of a nucleic acid aptamer and a nucleic acid tail. The properties of bifunctional molecules were investigated by both theoretical prediction and experimental determination. Different from the algorithm-based structure prediction, the experimental data showed that some nucleic acid tails could significantly decrease the binding capability of the aptamer. It was also found that the effectiveness of bifunctional molecules in labeling cells was dependent on the hybridization length. Based on these understandings, one bifunctional molecule was selected to study pretargeting. The results demonstrated that the bifunctional molecule could not only bind to target cells, but also hybridize with its complementary oligonucleotide on the cell surface. Thus, bifunctional nucleic acid molecules hold great potential for pretargeting applications.  相似文献   
1000.
As a member of the class III histone deacetylases, Sirtuin-2 (SIRT2) is critical in cell cycle regulation which makes it a potential target for cancer therapeutics. In this study, we identified a novel SIRT2 inhibitor, AC-93253, with IC50 of 6 μM in vitro. The compound is selective, inhibiting SIRT2 7.5- and 4-fold more potently than the closely related SIRT1 and SIRT3, respectively. AC-93253 significantly enhanced acetylation of tubulin, p53, and histone H4, confirming SIRT2 and SIRT1 as its cellular targets. AC-93253 as a single agent exhibited submicromolar selective cytotoxicity towards all four tumor cell lines tested with a therapeutic window up to 200-fold, comparing to any of the three normal cell types tested. Results from high content analysis suggested that AC-93253 significantly triggered apoptosis. Taken together, SIRT2 selective inhibitor AC-93253 may serve as a novel chemical scaffold for structure-activity relationship study and future lead development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号