首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   10篇
  国内免费   7篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   21篇
  2013年   21篇
  2012年   17篇
  2011年   28篇
  2010年   21篇
  2009年   27篇
  2008年   35篇
  2007年   29篇
  2006年   24篇
  2005年   18篇
  2004年   8篇
  2003年   10篇
  2002年   14篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   6篇
  1997年   9篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   7篇
  1984年   14篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   7篇
  1979年   6篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
401.
A study of flightlessness in the Galápagos cormorant (Compsohalieus [Nannopterum] harrisi) was undertaken using study skins and skeletons of C. harrisi and eight flighted confamilials; in addition, four skin specimens and disassociated skeletal elements of the extinct spectacled cormorant (C. perspicillatus) of Beringia, reputed by some to have been flightless, were studied. Anatomical specimens of C. penicillatus and C. harrisi were dissected for myological comparisons. Flightless C. harrisi is 1.6 to 2.2 times as heavy as its extant flighted congeners; males averaged 3958 g and females averaged 2715 g in total body weight. Estimates of body weight for C. perspicillatus based on femur length approximated 3900 g. Wing lengths of C. harrisi were smaller than those of any other cormorant, averaging 190 mm and 170 mm for males and females, respectively. Wing-loadings (g body mass.cm-2 wing area) of flighted cormorants ranged from 1.0 to 1.7. Estimated wing-loadings, incorporating approximate wing areas, were 2.0 and 5.1 g.cm-2 for C. perspicillatus and C. harrisi, respectively; the former suggests that C. perspicillatus was probably capable of laboured flight. The small wings of C. harrisi result from an c. 50% shortening of remiges, accompanied by reduced asymmetry of vane widths and increased rounding of the tips, and significant reductions in lengths of wing bones, particularly the radius and ulna. Numbers of primary and secondary remiges in C. harrisi remain unchanged. Multivariate morphometries revealed that sexual dimorphism in external and skeletal dimensions is significantly greater in C. harrisi than in flighted cormorants. Canonical analysis of six external measurements indicated that C. harrisi is distinguished primarily by its relatively short wings. Skeletal peculiarities of C. harrisi were diverse, including conformational changes in the sternum, furcula, coracoid, humerus, ulna, radius, carpometacarpus and patella. Mensural comparisons confirmed substantial reductions in elements of the pectoral girdle of C. harrisi, particularly the sternal carina, as well as the alar skeleton, especially the radius and ulna. Differential shortening of the wing elements resulted in significant differences in proportions within the wing skeleton. These unique skeletal proportions of C. harrisi, in addition to its great overall size, combine to produce an immense multivariate skeletal distance between C. harrisi and all confamilials. Sexual dimorphism in skeletal dimensions, in both total and size-corrected data, was 2–3 times greater in C. harrisi than in other phalacrocoracids sampled. Most pectoral muscles of C. harrisi were absolutely or relatively smaller than those of C. penicillatus, in spite of its larger body size. No muscles or parts thereof were lacking in the pectoral limb of C. harrisi, but a number of qualitative differences distinguished the musculature of the flightless species, including: an exceptionally tough skin involving a well-developed M. pectoralis pars abdominalis and M. latissimus dorsi interscapularis; a thin, medially obsolete and laterally extensive M. pectoralis pars thoracica; a weakly developed M. rhomboideus profundus consisting of a variably tendinous fascia invested with three fasciculi of muscle fibres; an extraordinarily thick, extensive M. obliquus externus abdominis, which, together with a unique cnemio-costal slip of smooth muscle, restricts the metapatagium through an anchoring of M. serratus superficialis metapatagialis; and the presence of a unique alular muscle named here as M. levator alulae. Fusions of the tendons of origin and insertion, respectively, of M. flexor digiti superficialis and M. flexor digiti profundus in C. harrisi, muscles derived from a common muscle primordium, and the retention of a carpometacarpal tendon of M. flexor carpi ulnaris cranialis constitute strong evidence of pectoral paedomorphosis in C. harrisi. Mensural comparisons quantified the reduction of pectoral muscles in C. harrisi and indicated that these reductions were especially pronounced in the distal musculature. Morphological characteristics of Phalacrocoracidae, together with the exploitation of localized marine food resources and weakly developed seasonal movements of Compsohalieus, may have predisposed the founding population of C. harrisi to flightlessness. Anatomical changes in C. harrisi are exceeded in degree among foot-propelled diving birds by those of only a few fossil flightless birds (e.g. Hesperomis, Chendytes). Many of the morphological peculiarities of C. harrisi are paedomorphic, although several are not attributable to developmental heterochrony. These morphological characters of flightless C. harrisi are considered with respect to locomotion, feeding ecology, reproduction and demography of the species, and are compared with those of other flightless carinates.  相似文献   
402.
403.
A method has been developed to determine the activities of specific sialyltransferases by analysis of the products of the reaction. This method, which utilizes high performance liquid chromatography, distinguishes addition of sialic acid to the N-acetylgalactosamine vs. galactose residues of the mucin disaccharide Galβ(1→3)GalNac, and can be used to distinguish formation of the 3′- and 6′-isomers of sialyllactose. For the bovine, ovine, and porcine submaxillary extracts, more than 95% of the activity with asialo ovine submaxillary mucin is due to formation of NeuAc α(2→6)GalNAc. With lactose as the acceptor, more than 95% of the α(2→3) isomer is produced. Activity with asialofetuin is due solely to the O-linked chain, with relative activity toward the galactose vs. GalNAc residues of 0.32, 1.5, and 0.10 for bovine, ovine, and porcine, respectively. The rat submaxillary gland extract showed equal formation of 3′- and 6′-sialyllactose, and very low activity with asialo ovine submaxillary mucin. However, at least 40% of the activity toward the Galβ(1→3)GalNAc disaccharide of asialofetuin was directed toward the GalNAc residue. The relative preference of the N-acetylgalactosaminide α(2→6) sialyltransferase for a monosaccharide vs. a substituted GalNAc may play a role in regulation of chain length during mucin synthesis.  相似文献   
404.
Bovine α1,3galactosyltransferase (α1,3GalT) transfers galactose from UDP-α-galactose to terminal β-linked galactosyl residues with retention of configuration of the incoming galactose residue. The epitope synthesized has been shown to be critical for xenotransplantation. According to a proposed double-displacement reaction mechanism, glutamate-317 (E317) is thought to be the catalytic nucleophile. The proposed catalytic role of E317 involves an initial nucleophilic attack with inversion of configuration and formation of a covalent sugar–enzyme intermediate between E317 and galactose from the donor substrate, followed by a second nucleophilic attack performed by the acceptor substrate with a second inversion of configuration. To determine whether E317 of α1,3GalT is critical for enzyme activity, site-directed mutagenesis was used to substitute alanine, aspartic acid, cysteine and histidine for E317. If the proposed reaction mechanism for the α1,3GalT enzyme is correct, E317D and E317H would produce active enzymes since they can act as nucleophiles. The non-conservative mutation E317A and conservative mutation E317C are predicted to produce inactive or very low activity enzymes since the E317A mutant cannot engage in a nucleophilic attack, and the E317C mutant would trap the galactose residue. The results obtained demonstrate that E317D and E317H mutants retained activity, albeit significantly less than the wild-type enzyme. Additionally, both E317A and E317C mutant also retained enzyme activity, suggesting that E317 is not the catalytic nucleophile proposed in the double-displacement mechanism. Therefore, either a different amino acid may act as the catalytic nucleophile or the reaction must proceed by a different mechanism.  相似文献   
405.
Using 7.4 kb of 5′ flanking DNA from the Drosophila cholinergic gene locus to drive Gal4 expression we can visualize essentially all cholinergic neurons and neuropiles after genetic recombination with a UAS–GFP (S65T) reporter gene. In contrast to previous methods somata and neuropiles can be observed in the same samples. Fluorescence intensity is strong enough to allow observations in live animals at all developmental stages. Three-dimensional reconstructions made from confocal sections of whole-mount preparations reveal the extensive cholinergic connections among various regions of the nervous system.  相似文献   
406.
β1,4-Galactosyltransferase (GalTase, EC 2.4.1.38) transfers galactose to the terminal N-acetylglucosamine of complex-type N-glycans, which have great importance for cell-cell interactions during fertilization and early embryogenesis. In this study, the activity of β1,4-galactosyltransferase in mouse brain during development was measured with the method of reverse HPLC using a fluorescence-labeled biantenary sugar chain, GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc-PA. The level of messenger RNA of this enzyme during the development of mouse brain was also investigated with Northern blot analysis. The results showed that: (1) β1,4-galactosyltransferase showed similar branch specificity and kinetics for the biantenary substrate during development; (2) GalTase activity in fetal mouse brain was four times higher than that in adult mouse brain and decreased gradually in the course of development; (3) messenger RNA level was highest in fetal mouse and decreased dramatically after birth. However, the contents of mRNA were not parallel to the enzyme activity.  相似文献   
407.
Virtually all cell surface proteins and many cell membrane lipids are glycosylated, creating a cell surface glycocalyx. The glycan chains attached to cell surface glycoproteins and glycolipids are complex structures with specific additions that determine functions of the glycans in cell–cell communication and cell sensing of the environment. One type of specific modification of cell surface glycans is decoration of glycan termini by sialic acids. On T cells, these terminal sialic acid residues are involved in almost every aspect of T cell fate and function, from cell maturation, differentiation, and migration to cell survival and cell death. The roles that sialylated glycans play in T cell development and function, including binding to specific sialic acid-binding lectins, are reviewed here.  相似文献   
408.
Urbanization is expanding worldwide with major consequences for organisms. Anthropogenic factors can reduce the fitness of animals but may have benefits, such as consistent human food availability. Understanding anthropogenic trade‐offs is critical in environments with variable levels of natural food availability, such as the Galápagos Islands, an area of rapid urbanization. For example, during dry years, the reproductive success of bird species, such as Darwin''s finches, is low because reduced precipitation impacts food availability. Urban areas provide supplemental human food to finches, which could improve their reproductive success during years with low natural food availability. However, urban finches might face trade‐offs, such as the incorporation of anthropogenic debris (e.g., string, plastic) into their nests, which may increase mortality. In our study, we determined the effect of urbanization on the nesting success of small ground finches (Geospiza fuliginosa; a species of Darwin''s finch) during a dry year on San Cristóbal Island. We quantified nest building, egg laying and hatching, and fledging in an urban and nonurban area and characterized the anthropogenic debris in nests. We also documented mortalities including nest trash‐related deaths and whether anthropogenic materials directly led to entanglement‐ or ingestion‐related nest mortalities. Overall, urban finches built more nests, laid more eggs, and produced more fledglings than nonurban finches. However, every nest in the urban area contained anthropogenic material, which resulted in 18% nestling mortality while nonurban nests had no anthropogenic debris. Our study showed that urban living has trade‐offs: urban birds have overall higher nesting success during a dry year than nonurban birds, but urban birds can suffer mortality from anthropogenic‐related nest‐materials. These results suggest that despite potential costs, finches benefit overall from urban living and urbanization may buffer the effects of limited resource availability in the Galápagos Islands.  相似文献   
409.
410.
Republished here, with permission, in a slightly modified form, from Noticias de Galapagos 55, July 1995, 18–24. Copyright remains, by agreement, with Noticias de Galápagos , which is published by The Charles Darwin Foundation for the Galápagos Islands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号