首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   20篇
  国内免费   16篇
  2023年   12篇
  2022年   10篇
  2021年   14篇
  2020年   20篇
  2019年   23篇
  2018年   34篇
  2017年   24篇
  2016年   14篇
  2015年   14篇
  2014年   112篇
  2013年   42篇
  2012年   13篇
  2011年   30篇
  2010年   20篇
  2009年   16篇
  2008年   29篇
  2007年   12篇
  2006年   14篇
  2005年   9篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
161.
Increasing studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of hepatocellular carcinoma (HCC). However, little information is currently available about miR‐1914 in HCC. Here, we first confirmed that miR‐1914 inhibition in HCC cell lines and tumour specimens correlates with tumour size and histological grade. In a series of functional experiments, miR‐1914 inhibited tumour proliferation and colony formation, resulting in cell cycle arrest and increased apoptosis. Moreover, miR‐1914 mediated its functional effects by directly targeting GPR39 in HCC cells, leading to PI3K/AKT/mTOR repression. Restoring GPR39 expression incompletely counteracted the physiological roles of miR‐1914 in HCC cells. In addition, down‐regulation of AKT phosphorylation inhibited the effects of miR‐1914 in HCC. Furthermore, the overexpression of lncRNA DUXAP10 negatively correlated with the expression of miR‐1914 in HCC; thus, lncRNA DUXAP10 regulated miR‐1914 expression and modulated the GPR39/PI3K/AKT‐mediated cellular behaviours. In summary, the present study demonstrated for the first time that lncRNA DUXAP10–regulated miR‐1914 plays a functional role in inhibiting HCC progression by targeting GPR39‐mediated PI3K/AKT/mTOR pathway, and this miRNA represents a novel therapeutic target for patients with HCC.  相似文献   
162.
Various neuropeptides related to the energy equilibrium affect bone growth in humans and animals. Neuropeptides W (NPW) are identical in the internal ligands of the two G‐protein receptors (GPRs) included in subtypes 7 and 8. Neuropeptides W inhibits proliferation in the cultivated rat calvarial osteoblast‐like (ROB) cells. This study examines the expression of NPW and GPR7 in murine chondrocyte and their function. An immunohistochemical analysis showed that NPW and GPR7 were expressed in the proliferative chondrocytes of the growth plates in the hind limbs of mice. The NPW mRNA quickly elevated in the early differentiation (7‐14 days) of ATDC5 cells, while NPW and GPR7 mRNA were reduced during the late stage (14‐21 days) of differentiation. Neuropeptide W‐23 (NPW‐23) promoted the proliferation of ATDC5 cells, which was attenuated by inhibiting the GPR7, protein kinase A (PKA), protein kinase C (PKC) and ERK1/2 pathways. Neuropeptide W‐23 enhanced the early cell differentiation, as evaluated by collagen type II and the aggrecan gene expression, which was unaffected by inhibiting the ERK1/2 pathway, but significantly decreased by inhibiting the PKA, PKC and p38 MAPK pathways. In contrast, NPW‐23 was not involved in the terminal differentiation of the chondrocytes, as evaluated by the mineralization of the chondrocytes and the activity of the alkaline phosphatase. Neuropeptides W stimulated the PKA, PKC, p38 MAPK and ERK1/2 activities in a dose‐ and time‐dependent manner in the ATDC5 cells. These results show that NPW promotes the proliferation and early differentiation of murine chondrocyte via GPR7 activation, as well as PKA and PKC‐dependent signalling cascades, which may be involved in endochondral bone formation.  相似文献   
163.
164.
165.
Autism spectrum disorder (ASD) is a developmental brain disorder. Mutations in synaptic components including synaptic adhesion molecules have been found in ASD patients. Contactin‐associated protein‐like 2 (CASPR2) is one of the synaptic adhesion molecules associated with ASD. CASPR2 forms a complex with receptors via interaction with multiple PDZ domain protein 1 (MUPP1). Little is known about the relationship between impaired CASPR2‐MUPP1‐receptor complex and the pathogenesis of ASD. GPR37 is a receptor for survival factors. We recently identified mutations including R558Q in the G‐protein‐coupled receptor 37 (GPR37) gene in ASD patients. The mutated GPR37s accumulate in the endoplasmic reticulum. In this study, we show that GPR37 is a component of the CASPR2‐MUPP1 receptor complex in the mouse brain. CASPR2 and GPR37 mainly interacted with the PDZ3 and PDZ11 domains of MUPP1, respectively. Compared to GPR37, GPR37(R558Q) slightly interacted with MUPP1 and caused dendritic alteration. GPR37, but not GPR37(R558Q) nor GPR37‐deltaC which lacks its PDZ binding domain, was transported to the cell surface by MUPP1. In primary hippocampal neurons, GPR37 co‐localized with MUPP1 and CASPR2 at the synapse, but not GPR37(R558Q). Thus, ASD‐related mutation of GPR37 may cause the impaired CASPR2‐MUPP1‐GPR37 complex on the dendrites associated with one of the pathogenesis of ASD.

  相似文献   

166.
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane.  相似文献   
167.
目的:观察低浓度84消毒液对小鼠生殖生理的影响。方法将72只KM小鼠随机分为3组,即:0.5%84消毒液组( A组)、2.0%84消毒液组( B组)和生理盐水组( C组),每组24只,雌雄各半,各组每天1次灌胃给予相应药物,连续9周。阴道涂片镜检观察雌性小鼠的动情周期。9周后,观察雄性小鼠的精子畸形率;并用ELISA法测定小鼠血清中性激素的水平;并取睾丸(或卵巢)、心、肝、肺、肾进行组织学观察。结果与C组比较,A和B组小鼠体重差异无显著性( P >0.05);血清性激素水平差异无显著性( P >0.05);雌性小鼠动情周期差异无显著性(P >0.05);组织学观察未见异常;与C组比较,A组小鼠精子畸形率差异无显著性(P >0.05),B组小鼠精子畸形率显著增高( P =0.041<0.05)。结论0.5%84消毒液对小鼠的生殖生理无明显影响,在实际使用中要严格控制消毒液浓度。  相似文献   
168.
Systematic SAR optimization of the GPR119 agonist lead 1, derived from an internal HTS campaign, led to compound 29. Compound 29 displays significantly improved in vitro activity and oral exposure, leading to GLP1 elevation in acutely dosed mice and reduced glucose excursion in an OGTT study in rats at doses ⩾10 mg/kg.  相似文献   
169.
GPR119 has emerged as an attractive target for anti-diabetic agents. We identified a structurally novel GPR119 agonist 22c that carries a 5-(methylsulfonyl)indoline motif as an early lead compound. To generate more potent compounds of this series, structural modifications were performed mainly to the central alkylene spacer. Installation of a carbonyl group and a methyl group on this spacer significantly enhanced agonistic activity, resulting in the identification of 2-[1-(5-ethylpyrimidin-2-yl)piperidin-4-yl]propyl 7-fluoro-5-(methylsulfonyl)-2,3-dihydro-1H-indole-1-carboxylate (20). To further expand the chemical series of indoline-based GPR119 agonists, several heterocyclic core systems were introduced as surrogates of the carbamate spacer that mimic the presumed active conformation. This approach successfully produced an indolinylpyrimidine derivative 37, 5-(methylsulfonyl)-1-[6-({1-[3-(propan-2-yl)-1,2,4-oxadiazol-5-yl]piperidin-4-yl}oxy)pyrimidin-4-yl]-2,3-dihydro-1H-indole, which has potent GPR119 agonist activity. In rat oral glucose tolerance tests, these two indoline-based compounds effectively lowered plasma glucose excursion and glucose-dependent insulin secretion after oral administration.  相似文献   
170.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases.LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation.The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号