首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6756篇
  免费   350篇
  国内免费   511篇
  2024年   16篇
  2023年   123篇
  2022年   152篇
  2021年   242篇
  2020年   191篇
  2019年   247篇
  2018年   191篇
  2017年   165篇
  2016年   155篇
  2015年   217篇
  2014年   316篇
  2013年   427篇
  2012年   236篇
  2011年   255篇
  2010年   213篇
  2009年   305篇
  2008年   339篇
  2007年   304篇
  2006年   337篇
  2005年   297篇
  2004年   288篇
  2003年   244篇
  2002年   210篇
  2001年   197篇
  2000年   171篇
  1999年   165篇
  1998年   154篇
  1997年   127篇
  1996年   140篇
  1995年   129篇
  1994年   153篇
  1993年   125篇
  1992年   113篇
  1991年   103篇
  1990年   97篇
  1989年   80篇
  1988年   76篇
  1987年   79篇
  1986年   55篇
  1985年   46篇
  1984年   43篇
  1983年   12篇
  1982年   24篇
  1981年   19篇
  1980年   11篇
  1979年   9篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
排序方式: 共有7617条查询结果,搜索用时 15 毫秒
971.
The LEAFY (LFY) protein is a key regulator of flower development in angiosperms. Its gradually increased expression governs the sharp floral transition, and LFY subsequently controls the patterning of flower meristems by inducing the expression of floral homeotic genes. Despite a wealth of genetic data, how LFY functions at the molecular level is poorly understood. Here, we report crystal structures for the DNA-binding domain of Arabidopsis thaliana LFY bound to two target promoter elements. LFY adopts a novel seven-helix fold that binds DNA as a cooperative dimer, forming base-specific contacts in both the major and minor grooves. Cooperativity is mediated by two basic residues and plausibly accounts for LFY's effectiveness in triggering sharp developmental transitions. Our structure reveals an unexpected similarity between LFY and helix-turn-helix proteins, including homeodomain proteins known to regulate morphogenesis in higher eukaryotes. The appearance of flowering plants has been linked to the molecular evolution of LFY. Our study provides a unique framework to elucidate the molecular mechanisms underlying floral development and the evolutionary history of flowering plants.  相似文献   
972.
973.
Cooper S 《FEMS yeast research》2008,8(3):345-8; discussion 349-50
The proposal that yeast, and cells in general, contains redundant genes that enable cells to survive mutational change has been supported by experiments and a strong metaphor. The redundant gene proposal is analyzed, and it is noted that there are many problems with the redundant gene model. An alternative metaphor is suggested to explain the genetic composition of a yeast culture.  相似文献   
974.
Inbred strains of mice differ in their susceptibility to excitotoxin-induced cell death, but the genetic basis of individual variation in differential susceptibility is unknown. Previously, we identified a highly significant quantitative trait locus (QTL) on chromosome 18 that influenced susceptibility to kainic acid-induced cell death ( Sicd1 ). Comparison of susceptibility to seizure-induced cell death between reciprocal congenic lines for Sicd1 and parental background mice indicates that genes influencing this trait were captured in both strains. Two positional gene candidates, Galr1 and Mbp , map to 55 cM, where the Sicd1 QTL had been previously mapped. Thus, this study was undertaken to determine if Galr1 and/or Mbp could be considered as candidate genes. Genomic sequence comparison of these two functional candidate genes from the C57BL/6J (resistant at Sicd1 ) and the FVB/NJ (susceptible at Sicd1 ) strains showed no single-nucleotide polymorphisms. However, expression studies confirmed that Galr1 shows significant differential expression in the congenic and parental inbred strains. Galr1 expression was downregulated in the hippocampus of C57BL/6J mice and FVB.B6- Sicd1 congenic mice when compared with FVB/NJ or B6.FVB- Sicd1 congenic mice. A survey of Galr1 expression among other inbred strains showed a significant effect such that 'susceptible' strains showed a reduction in Galr1 expression as compared with 'resistant' strains. In contrast, no differences in Mbp expression were observed. In summary, these results suggest that differential expression of Galr1 may contribute to the differences in susceptibility to seizure-induced cell death between cell death-resistant and cell death-susceptible strains.  相似文献   
975.
Synaptic efficacy following long-term potentiation (LTP) and memory consolidation is associated with changes in the expression of immediate early genes (IEGs). These changes are often accompanied by increased expression of glial fibrillary acidic protein (GFAP). While the protein products of the majority of IEGs are mainly restricted to the cell body, Arg3.1/Arc product is rapidly delivered to dendrites, where it accumulates close to synaptic sites. Arg3.1/Arc protein was originally considered neurone specific; however, we have recently found Arg3.1/Arc immunoreactivity (Arg3.1/Arc-IR) within glial cells and demonstrated its increased expression after LTP in the hippocampal dentate gyrus (DG). Here, we have further investigated this novel finding, using electron microscopic immunocytochemistry to determine the localization and sub-cellular distribution of Arg3.1/Arc protein in GFAP positive glia (GFAP-IR) in the DG. Arg3.1/Arc labelling was seen prominently in GFAP-IR glial cell bodies and in large- and medium-sized glial filamentous processes. GFAP-labelled medium-small peri-synaptic glial profiles also displayed Arg3.1/Arc-IR; however, the very thin and distal glial filaments only displayed Arc-IR. Arc-IR was distributed throughout the cytoplasm, often associated with GFAP filaments, and along the plasma membrane of glial processes. Peri-synaptic glial Arg3.1/Arc-IR processes were apposed to pre- and/or post-synaptic profiles at asymmetric axospinous synapses. These data, taken with our earlier study which provided evidence for an increase in astrocytic Arg3.1/Arc-IR after the induction of LTP, suggest a role for glial Arg3.1/Arc in structural and synaptic plasticity which may be critical for the maintenance of cognitive functions.  相似文献   
976.
Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.  相似文献   
977.
We have constructed a collection of single‐gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2‐3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches.  相似文献   
978.
The murid herpesvirus 4 (MuHV 4) species encompasses 7 isolates, out of which at least two (MHV-68, MHV-72) became in vitro propagated laboratory strains. Following intranasal inoculation, MuHV 4 induces an acute infectious mononucleosis-like syndrome with elevated levels of peripheral blood leukocytes, shifts in the relative proportion of lymphocytes along with the appearance of atypical mononuclear cells. At least two isolates exhibited spontaneous deletions at the left hand (5′-end) of their genome, resulting in the absence of M1, M2, M3 genes (strain MHV-72) and also of the M4 gene (strain MHV-76). Based on DNA sequence amplifications only, another two isolates (MHV-Šum and MHV-60) were shown to possess similar deletions of varying length. During latency (until 24 months post-infection), the mice infected with any MuHV 4 isolate (except MHV-76) developed lymphoproliferative disorders. The lack of tumor formation in MHV-76 infected mice was associated with persistent virus production at late post-infection intervals. In addition to careful analysis of spontaneously occurring 5′-end genome defects, our knowledge of the function of 5′-end genes relies on the behaviour of mutants with corresponding deletions and/or insertions. While M2 and M3 genes encode immune evasion proteins, M4 codes for a soluble glycopeptide acting as immunomodulator and/or immunostimulator.  相似文献   
979.
Mechanisms of magnesium homeostasis intensively studied over the last 10–15 years by means of pathophysiological and molecular genetic approaches have been considered. Impairments of magnesium homeostasis causes the development of magnesium-deficient states, which have been found in many common diseases (diabetes mellitus, cardiovascular diseases, chronic fatigue syndrome, alcoholism, psychiatric and neurologic diseases, etc.), stress condition, effects of some environmental factors as well as therapy with some drugs. Special attention is paid to familial hypomagnesemias caused by genetic defects of magnesium transport systems. The review considers clinical and biochemical characteristics of twelve familial disorders including mechanisms of their development. Deeper understanding of mechanisms of regulation of magnesium homeostasis will results in the development of new approaches in diagnostics, prophylaxis and treatment of magnesium-deficient conditions.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号