首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   10篇
  国内免费   2篇
  198篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   20篇
  2015年   12篇
  2014年   5篇
  2013年   12篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   22篇
  2008年   21篇
  2007年   13篇
  2006年   22篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有198条查询结果,搜索用时 46 毫秒
31.
I addressed the question how lake and catchment morphometry influences water chemistry and water quality over a large scale of European lakes, and developed the regression equations between most closely related morphometric and water quality indices. I analysed the data of 1,337 lakes included in the European Environment Agency (EEA) database, carrying out separate analyses for three basic lake types: large lakes (area ≥100 km2, 138 lakes), shallow lakes (mean depth ≤3 m, 153 lakes) and large and shallow lakes (area ≥100 km2 and mean depth ≤8 m, 35 lakes). The study revealed that in Europe, the lakes towards North are larger but shallower and have smaller catchment areas than the southern lakes; lakes at higher altitudes are deeper and smaller and have smaller catchment areas than the lowland lakes. Larger lakes have generally larger catchment areas and bigger volumes, and they are deeper than smaller lakes, but the relative depth decreases with increasing surface area. The lakes at higher latitudes have lower alkalinity, pH and conductivity, and also lower concentrations of nitrogen and phosphorus while the concentration of organic matter is higher. In the lakes at higher altitudes, the concentration of organic matter and nutrient contents are lower and water is more transparent than in lowland lakes. In larger lakes with larger catchment area, the alkalinity, pH, conductivity and the concentrations of nutrients and organic matter are generally higher than in smaller lakes with smaller catchments. If the lake is deep and/or its residence time is long, the water is more transparent and the concentrations of chlorophyll a, organic matter and nutrients are lower than in shallower lakes with shorter residence times. The larger the catchment area is with respect to lake depth, area and volume, the lower is the water transparency and the higher are the concentrations of the nutrients, organic matter and chlorophyll as well as pH, alkalinity and conductivity. The links between lake water quality and morphometry become stronger towards large and shallow lakes. Along the decreasing gradients of latitude, altitude and relative depth, the present phosphorus concentration and its deviation from the reference concentration increases.  相似文献   
32.
The coordination chemistry of three selected copper(II) salts with the flexible ligand 1,4-bis(1,2,4-triazol-1-yl)butane (abbreviated as btb) is described. This ligand acts as a bidentate ligand, bridging copper(II) ions, thereby generating polymers in 2D and 3D network solids.  相似文献   
33.
Assessment of ecological status in U.K. rivers using diatoms   总被引:6,自引:0,他引:6  
1. The European Union's Water Framework Directive requires all water bodies to achieve ‘good ecological status’ by 2015 and this paper describes a rationale for defining ‘good ecological status’ based on diatoms, a significant component of the biological quality element ‘macrophyte and phytobenthos’. 2. A database of benthic diatom samples collected over the past 20 years was assembled. New sampling, specifically for this project, was undertaken during 2004 to supplement these data. In total 1051 samples were included in the database with matching environmental data. 3. ‘Reference sites’, relatively unimpacted by human activity, were selected from this database by a series of screening steps and these sites were used to develop a site‐specific reference typology. 4. Environmental variables not related to the pressure gradient were used to predict the ‘expected’ Trophic Diatom Index (TDI) values at each site. Site‐specific TDI predictions were used to generate ecological quality ratios (EQRs) ranging from ≥1, where the diatom assemblage showed no impact, to (theoretically) 0, when the diatom assemblage was indicative of major anthropogenic activities. 5. The boundary between ‘high’ and ‘good’ status was defined as the 25th percentile of EQRs of all reference sites. The boundary between ‘good’ and ‘moderate’ status was set at the point at which nutrient‐sensitive and nutrient‐tolerant taxa were present in equal relative abundance. An ecological rationale for this threshold is outlined in the paper.  相似文献   
34.
DNA metabarcoding can contribute to improving cost‐effectiveness and accuracy of biological assessments of aquatic ecosystems, but significant optimization and standardization efforts are still required to mainstream its application into biomonitoring programmes. In assessments based on freshwater macroinvertebrates, a key challenge is that DNA is often extracted from cleaned, sorted and homogenized bulk samples, which is time‐consuming and may be incompatible with sample preservation requirements of regulatory agencies. Here, we optimize and evaluate metabarcoding procedures based on DNA recovered from 96% ethanol used to preserve field samples and thus including potential PCR inhibitors and nontarget organisms. We sampled macroinvertebrates at five sites and subsampled the preservative ethanol at 1 to 14 days thereafter. DNA was extracted using column‐based enzymatic (TISSUE) or mechanic (SOIL) protocols, or with a new magnetic‐based enzymatic protocol (BEAD), and a 313‐bp COI fragment was amplified. Metabarcoding detected at least 200 macroinvertebrate taxa, including most taxa detected through morphology and for which there was a reference barcode. Better results were obtained with BEAD than SOIL or TISSUE, and with subsamples taken 7–14 than 1–7 days after sampling, in terms of DNA concentration and integrity, taxa diversity and matching between metabarcoding and morphology. Most variation in community composition was explained by differences among sites, with small but significant contributions of subsampling day and extraction method, and negligible contributions of extraction and PCR replication. Our methods enhance reliability of preservative ethanol as a potential source of DNA for macroinvertebrate metabarcoding, with a strong potential application in freshwater biomonitoring.  相似文献   
35.
Type-specific reference conditions that describe sites with no or only very minor anthropogenic disturbances are a basic requirement of the European Water Framework Directive. The reference condition approach implies a previous determination of criteria acceptable for the definition of near-natural stretches. In this paper, a methodology based on selection and validation procedures is applied to a Portuguese watershed to guide the identification of reference sites. The methodology consisted of three phases: (1) a preliminary site inspection through the use of maps, available data and an extensive screening field campaign that resulted in the selection of 52 potentially undisturbed small- and medium-sized rivers stretches, ranging from 43 to 1069 m in altitude, with catchment areas between 4 and 641 km2 and representing siliceous and calcareous riverbeds; (2) a detailed site selection based on ten pre-defined criteria involving physical/social/biological attributes that indicated catchment land use changes and alien vegetal riparian species as major human impacts; (3) a site validation procedure involving detailed investigation of benthic macroinvertebrate communities, riparian vegetation, in-stream habitat quality and chemical parameters that showed riparian wood-related problems as a major restriction to validate a stretch as a near-natural site. Only about 12% of all investigated river sites, accounting for 600 m of all 5200 m studied, could be considered as near-reference stretches or sites retaining essential natural functions. Selection and validation procedures can identify different sites as reference, which reinforces the need for applying both procedures. The results presented can help to accomplish the requirements of the EU – Water Framework Directive by selecting reference sites as the first step to establish biological reference conditions and, simultaneously, to form a basis for nature conservation strategies. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   
36.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   
37.
This review summarises the existing literature and outlines the theoretical basis for using standard methods for sampling diatoms from rivers to sample littoral diatoms and other phytobenthos from standing waters. The European Union's Water Framework Directive has created a statutory obligation for EU Member States to monitor macrophytes and phytobenthos in lakes. Although there has been a considerable amount of work using phytobenthos (especially diatoms) to monitor river water quality in Europe, there are fewer studies on the use of phytobenthos for monitoring in lakes. European standard methods for sampling diatoms from rivers should be suitable, with only minor modifications, for sampling littoral diatoms from lakes and other standing water bodies. These recommendations should be applicable to all temperate regions.  相似文献   
38.
Application of uncertainty and variability in LCA   总被引:1,自引:0,他引:1  
As yet, the application of an uncertainty and variability analysis is not common practice in LCAs. A proper analysis will be facilitated when it is clear which types of uncertainties and variabilities exist in LCAs and which tools are available to deal with them. Therefore, a framework is developed to classify types of uncertainty and variability in LCAs. Uncertainty is divided in (1) parameter uncertainty, (2) model uncertainty, and (3) uncertainty due to choices, while variability covers (4) spatial variability, (5) temporal variability, and (6) variability between objects and sources. A tool to deal with parameter uncertainty and variability between objects and sources in both the inventory and the impact assessment is probabilistic simulation. Uncertainty due to choices can be dealt with in a scenario analysis or reduced by standardisation and peer review. The feasibility of dealing with temporal and spatial variability is limited, implying model uncertainty in LCAs. Other model uncertainties can be reduced partly by more sophisticated modelling, such as the use of non-linear inventory models in the inventory and multi media models in the characterisation phase.  相似文献   
39.
Highlights of large lake research and management in Europe   总被引:1,自引:0,他引:1  
Lakes in Europe have a bipolar distribution by latitude with higher lake densities in the north (58–65° N) and south (38–48° N). By area, 95% of the large lakes (>100 km2) are located at altitudes lower than 100 m above sea level (ASL) and only 1% lie higher than 1,000 m ASL. Physically large lakes exhibit several similarities to seas and oceans in their thermal structure and circulation dynamics. From the chemical point of view, lakes are important accumulation sites for substances transported from the watershed or built up in the lake itself but they may contribute positively to global greenhouse gas emission. Fauna and flora of ancient large lakes such as the Caspian Sea and Lake Ohrid include large numbers of endemic species, which become endangered if conditions change because of direct human impact, alien species invasions or climate change. Large lakes offer a wide range of ecosystem services to society, the multiple use of which creates multiple pressures on these water bodies such as nutrient load and toxic pollution, modification of hydrology and shore line structure, and shifting of the food web balance by stocking or harvesting various species. Although large lakes are among the best-studied ecosystems in the world, the application to them of environmental regulations such as the European Water Framework Directive is a challenging task and requires that several natural and management aspects specific to these water bodies are adequately considered.  相似文献   
40.
Studies on shallow lakes from the north temperate zone show that they alternate between clear and turbid water states in response to control factors. However, the ecology of semi-arid to arid shallow Mediterranean lakes is less explored. Hydrological effects (e.g. water level fluctuations, water residence time) on major ions and nutrient dynamics and processes, and ecology of submerged macrophytes appear to have a crucial role for food webs in shallow Mediterranean lakes. Nutrient control may be of greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes. This will be relevant for the implementation of the European Water Framework Directive, and conservation and management of these ecosystems. Strong trophic cascading effects of fish resulting from dominance of omnivorous and benthivorous fish species, whose diversity is usually high, together with frequent spawning and absence of efficient piscivores, seem to be the reason for the lack of large-bodied grazers that could control phytoplankton. However, such effects may vary within the region depending on fish distribution and community. These factors need elaboration in order to allow shallow lake ecologists and managers to develop better restoration strategies for eutrophicated shallow Mediterranean lakes. Consequently, modifications for the implementation of the European Water Framework Directive for determining ecological status in shallow Mediterranean lakes appear to be necessary. Furthermore, the implications of climate warming may be even more challenging than in high latitude lakes since shallow lakes in the Mediterranean region are among the most sensitive to extreme climate changes. There is an urgent need for data on the ecology of shallow lakes in the region. An appeal is made for international cooperation, development of large-scale research and information exchange to facilitate this and a web-based discussion list has been implemented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号