首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   5篇
  国内免费   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2004年   1篇
  2003年   1篇
  1997年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有33条查询结果,搜索用时 296 毫秒
11.
12.
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate‐mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate‐amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate‐contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES‐2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85–90%), which is very suitable for bio‐alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES‐2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.  相似文献   
13.
Bioprocess development today is slow and expensive compared to chemical process development. A drastic paradigm shift is necessary and possible by the consistent application of engineering strategies that are typically used in the process development phase already in the early product development. Aside from providing a consistent pathway, strategies such as statistical‐based design of experiments, fed‐batch, minibioreactors, new on‐line sensors, process modeling, and control tools in combination with automation of manual steps offer a higher success rate and the opportunity to find the optimum parameters and operation point. This also directly benefits the early phases of biomolecular screening and initial production of small amounts of the target molecule. The paper reviews the bioprocess developmental phases from a business perspective and the available systems and technologies.  相似文献   
14.
Abstract: This review concerns the issues involved in the industrial development of fed-batch culture processes with Saccharomyces cereriviae strains producing heterologous proteins. Most of process development considerations with fed-batch recombinant cultures are linked to the reliability and reproducibility of the process for manufacturing environments where quality assurance and quality control aspects are paramount. In this respect, the quality, safety and efficacy of complex biologically active molecules produced by recombinant techniques are strongly influenced by the genetic background of the host strain, genetic stability of the transformed strain and production process factors. An overview of the recent literature of these culture-related factors is coupled with our experience in yeast fed-batch process development for producing various therapeutic grade proteins. The discussion is based around three principal topics: genetics, microbial physiology and fed-batch process design. It includes the fundamental aspects of yeast strain physiology, the nature of the recombinant product, quality control aspects of the biological product, features of yeast expression vectors, expression and localization of recombinant products in transformed cells and fed-batch process considerations for the industrial production of Saccharomyces cerevisiae recombinant proteins. It is our purpose that this review will provide a comprehensive understanding of the fed-batch recombinant production processes and challenges commonly encountered during process development.  相似文献   
15.
Fermentation optimization involves potentially conflicting multiple objectives such as product concentration and production media cost. Simultaneous optimization of these objectives would result in a multiobjective optimization problem, which is characterized by a set of multiple solutions, knows as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch and fed batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75 g l−1, 3.97 g $-1) to (0.44 g l−1, 5.19 g $-1) for batch and from (1.5 g l−1, 5.46 g $-1) to (1.1 g l−1, 6.34 g $-1) for fed batch operations. One pareto solution each for batch and for fed batch mode was experimentally validated.  相似文献   
16.
Co‐cultures for simultaneous production of ethanol and xylitol were studied under different operation bioreactor modes using Candida tropicalis IEC5‐ITV and Saccharomyces cerevisiae ITV01‐RD in a simulated medium of sugarcane bagasse hydrolyzates. Xylitol and ethanol tolerance by S. cerevisiae and C. tropicalis, respectively, was evaluated. The results showed that C. tropicalis was sensitive to ethanol concentrations up to 30 g/L, while xylitol had no effect on S. cerevisiae viability and metabolism. The best condition found for simultaneous culture was S. cerevisiae co‐culture and C. tropicalis sequential cultivation at 24 h. Under these conditions, productivity and yield for ethanol were QEtOH = 0.72 g L?1 h?1 and YEtOH/s = 0.37 g/g, and for xylitol, QXylOH = 0.10 g L?1 h?1 and YXylOH/S = 0.31 g/g, respectively; using fed‐batch culture, the results were QEtOH = 0.87 g L?1 h?1 and YEtOH/s = 0.44 g L?1 h?1, and QEtOH = 0.27 g L?1 h?1 and YEtOH/s = 0.57 g/g, respectively. Maximum volumetric productivity in continuous multistep cultures of ethanol and xylitol was at dilution rates of 0.131 and 0.074 h?1, respectively. Continuous multistep production, QEtOH increased up to 50% more than in fed‐batch culture, even though xylitol yield remained unchanged.  相似文献   
17.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   
18.
Liquid phase oxygen supply strategy (LPOS), in which hydrogen peroxide (H(2)O(2)) is used to supply oxygen to the bioreactor, leads to low cell productivity despite high specific productivities of relevant metabolites. We hypothesized that high H(2)O(2) concentrations in the feed-zone led to local cell death, which in turn, lead to lower cell productivity. To test the hypothesis, a mathematical model was developed. Bacillus subtilis 168 was used as the model system in this study. The model simulations of cell concentrations in the bioreactor-zone were verified with the experimental results. The feed-zone H(2)O(2) concentrations remained 12-14 times higher than bulk bioreactor concentrations. The high local concentrations are expected to cause local cell killing, which explains the decrease in overall cell production by 50% at 300 rpm compared to conventional cultivation. Further, among the four different feed strategies studied using the model, dissolved oxygen (DO) controlled H(2)O(2) feed strategy caused least local cell killing and improved overall cell production by 34%.  相似文献   
19.
在KLF2000发酵罐中利用补料分批培养技术培养表达含重组质粒pBAD/HBs Fab的TOP10大肠杆菌,生产人源抗-HBs Fab,为批量生产作准备,在发酵过程中,控制溶氧30%以上,温度37℃,在基础培养基内生长4h后,补加以甘油为碳源的补料,继续生长到9h,加入阿拉伯糖,至终浓度为0.02%,30℃诱导表达5h,收集菌体,纯化制备目的蛋白。利用Western blot方法检测Fab抗原性,Dot blot方法检测生物学活性。14h发酵结束后,菌体密度最终达96g/L,纯化所得蛋白大约占菌体总蛋白的6%,含量为80mg/L,以重组质粒pBAD/HBs Fab,大肠杆菌TOP10表达表达比率与摇瓶相比没有降低,表达量达80mg/L左右,为大批量生产作了准备。  相似文献   
20.
Schizochytrium sp. AB‐610 accumulates relatively higher amount of DHA‐rich lipid in the cells, and it was found that DHA yield was closely related to the cell morphology and pH value during fermentation period. DHA production from Schizochytrium sp. AB‐610 in fed‐batch fermentation was investigated and four growth stages were clarified as lag stage, balanced growth stage, lipid accumulation stage, and lipid turnover stage, based on the morphologic observation and key parameters changes. Then a simple strategy of two‐stage pH control was developed, in which pH 7.0 was kept until 12 h after the end of balanced growth stage, and then shifted to 5.0 for the rest period in fermentation. A maximal DHA production of 11.44g/L was achieved. This approach has advantage of easy scaling up for industrial DHA fermentation from Schizochytrium sp. cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号