首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51729篇
  免费   2224篇
  国内免费   2279篇
  2023年   578篇
  2022年   768篇
  2021年   1071篇
  2020年   1175篇
  2019年   1337篇
  2018年   1374篇
  2017年   1137篇
  2016年   1150篇
  2015年   1231篇
  2014年   2331篇
  2013年   3827篇
  2012年   1652篇
  2011年   2365篇
  2010年   1744篇
  2009年   2284篇
  2008年   2446篇
  2007年   2492篇
  2006年   2111篇
  2005年   1999篇
  2004年   1622篇
  2003年   1590篇
  2002年   1320篇
  2001年   1023篇
  2000年   918篇
  1999年   889篇
  1998年   936篇
  1997年   859篇
  1996年   854篇
  1995年   813篇
  1994年   830篇
  1993年   768篇
  1992年   729篇
  1991年   642篇
  1990年   598篇
  1989年   585篇
  1988年   505篇
  1987年   536篇
  1986年   388篇
  1985年   780篇
  1984年   1064篇
  1983年   725篇
  1982年   817篇
  1981年   665篇
  1980年   578篇
  1979年   517篇
  1978年   326篇
  1977年   307篇
  1976年   255篇
  1974年   199篇
  1973年   195篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
941.
Regulation and functional significance of phospholipase D in myocardium   总被引:3,自引:0,他引:3  
There is now clear evidence that receptor-dependent phospholipase D is present in myocardium. This novel signal transduction pathway provides an alternative source of 1,2-diacylglycerol, which activates isoforms of protein kinase C. The members of the protein kinase C family respond differently to various combinations of Ca2+, phosphatidylserine, molecular species of 1,2-diacylglycerol and other membrane phospholipid metabolites including free fatty acids. Protein kinase C isozymes are responsible for phosphorylation of specific cardiac substrate proteins that may be involved in regulation of cardiac contractility, hypertrophic growth, gene expression, ischemic preconditioning and electrophysiological changes. The initial product of phospholipase D, phosphatidic acid, may also have a second messenger role. As in other tissues, the question how the activity of phospholipase D is controlled by agonists in myocardium is controversial. Agonists, such as endothelin-1, atrial natriuretic factor and angiotensin 11 that are shown to activate phospholipase D, also potently stimulate phospholipase C- in myocardium. PMA stimulation of protein kinase C inactivates phospholipase C and strongly activates phospholipase D and this is probably a major mechanism by which agonists that promote phosphatidyl-4,5-bisphosphate hydrolysis secondary activate phosphatidylcholine-hydrolysis. On the other hand, one group has postulated that formation of phosphatidic acid secondary activates phosphatidyl-4,5-bisphosphate hydrolysis in cardiomyocytes. Whether GTP-binding proteins directly control phospholipase D is not clearly established in myocardium. Phospholipase D activation may also be mediated by an increase in cytosolic free Ca2+ or by tyrosine-phosphorylation.  相似文献   
942.
Relatively little is known of fatty acid specificity in cellular fatty acid uptake. In this study L-cells, a fibroblastic cell line with very low levels of endogenous cytosolic fatty acid binding protein, were used to examine the role of cis and trans unsaturation on fatty acid uptake. The fluorescent fatty acids, trans-parinaric acid and cis-parinaric acid, were used as analogs of straight-chain saturated, and kinked-chain unsaturated fatty acids, respectively, in order to evaluate the fatty acid specificity of the uptake system. Parinaric acid is poorly metabolizable; greater than 97% was unesterified while 3H-oleic acid was almost totally metabolized after 30 min uptake. Cis- and trans-parinaric acid uptake was saturable and dependent on the concentration of fatty acid. However, the initial rate and maximal amount of trans-parinaric acid taken up by the L-cells was greater than for cis-parinaric acid under the same conditions. The affinity of L-cell uptake for trans-parinaric acid (Km = 0.12 uM) was 35-fold higher than that for cis-parinaric acid (Km = 4.17 uM) . Based on competition studies with oleic and stearic acids, it was concluded that the cis- and trans-parinaric acid were taken up by the same L-cell fatty acid uptake system. The results suggest that the L-cell fatty acid uptake system has selectivity for straight chain rather than kinked chain unsaturated fatty acids.Abbreviations Cis-parinaric acid 9Z, 11E, 13E, 15Z-octatetraenoic acid - trans-parinaric acid 9E, I IE, 13E, 15E-octatetraenoic acid - EGTA ethylene glycol-bis(beta-amlno-ethyl ether) N,N,N,N-tetratacetic acid - BSA bovine serum albumin - PBS phosphate buffered saline  相似文献   
943.
The interactions between the omega-3 unsaturated fatty acids and peroxisomal function have been reviewed, in order to update and integrate knowledge in this area. Following a brief retrospective of the major clinical involvements of these fatty acids, the participation of the peroxisome in their metabolism has been appraised - the peroxisome being shown to exert a major influence on both the synthesis and degradation of the omega-3 fatty acids, with these effects flowing on to the widespread physiological implications of the derivative eicosanoids. Interactions between the omega-3 and omega-6 families of fatty acids have been discussed, as have the interdependent phenomena of peroxisome proliferation, membrane remodelling and cellular signalling. Amongst the signalling involvements covered were those of steroid hormone receptor superfamily, the phosphatidy1choline cycle, and the regulatory influences of oxygen free radicals. Comment has also been included on the separate biological roles of the individual omega-3 fatty acids, their influence on differential gene function, and on the molecular mechanisms of their pharmacological effects. It is concluded that the peroxisome is intimately involved in directing the metabolism and physiological influence of the omega-3 unsaturated fatty acids, and that this organelle merits much greater emphasis in future research aimed at unravelling the profound biological effects of these unique and multipotent compounds.  相似文献   
944.
Rat liver mitochondria were examined for their ability to reduce dehydroascorbic acid to ascorbic acid in an -lipoic acid dependent or independent manner. The a-lipoic acid dependent reduction was stimulated by factors that increased the NADH dependent reduction of -lipoic acid to dihydrolipoic acid in coupled reactions. Optimal conditions for dehydroascorbic acid reduction to ascorbic acid were achieved in the presence of pyruvate, -lipoic acid, and ATP. Electron transport inhibitors, rotenone and antimycin A, further enhanced the dehydroascorbic acid reduction. The reactions were strongly inhibited by 1 mM iodoacetamide or sodium arsenite. Mitoplasts were qualitatively similar to intact mitochondria in dehydroascorbate reduction activity. Pyruvate dehydrogenase and -ketoglutarate dehydrogenase reduced dehydroascorbic acid to ascorbic acid in an -lipoic acid, coenzyme A, and pyruvate or -ketoglutarate dependent fashion. Dehydroascorbic acid was also catalytically reduced to ascorbic acid by purified lipoamide dehydrogenase in an -lipoic acid (K 0.5=1.4±0.8 mM) and lipoamide (K 0.5=0.9±0.3 mM) dependent manner.  相似文献   
945.
Because vitamin B12 and Ni are known to interact and because of the similar metabolic roles of vitamin B12 and folate, an experiment was performed to determine the effect of dietary folate on Ni deprivation in rats. A 2×2 factorially arranged experiment used groups of nine weanling Sprague-Dawley rats. Dietary variables were Ni, as NiCl2·6H2O, 0 or 1 μg/g; and folic acid, 0 or 2 mg/kg. The basal diet, based on skim milk, contained less than 20 ng Ni/g. After 54 d, an interaction between dietary Ni and folate affected several variables including erythrocyte folate, plasma amino acids, and femur trace elements. For example, folate deprivation decreased erythrocyte folate; folate supplementation to the Ni-supplemented rats caused a larger increase in erythrocyte folate concentration than did folate supplementation to the Ni-deprived rats. Also, dietary Ni affected several plasma amino acids important in one-carbon metabolism (e.g., Ni deprivation increased the plasma concentrations of glycine and serine). This study shows that dietary Ni, folate, and their interaction can affect variables associated with one-carbon metabolism. This study does not show a specific site of action of Ni but it indicates that Ni may be important in processes related to the vitamin B12-dependent pathway in methionine metabolism, possibly one-carbon metabolism. US Department of Agriculture, Agricultural Research Service, Northern Plans Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   
946.
947.
A wheat cDNA encoding a glycine-rich RNA-binding protein, whGRP-1, was isolated. WhGRP-1 contains two conserved domains, the RNA-binding motif (RNP motif) combined with a series of glycine-rich imperfect repeats, characteristic of a conserved family of plant RNA-binding proteins. Northern analysis revealed that whGRP-1 mRNA accumulates to high levels in roots and to lower levels in leaves of wheat seedlings. whGRP-1 mRNA accumulation is not enhanced by exogenous abscisic acid in seedlings and accumulates to very high levels during wheat embryo development, showing a pattern different from that of the ABA-inducible wheat Em gene.  相似文献   
948.
949.
Previous studies indicated that plant nuclear genes for chloroplast and cytosolic isoenzymes of 3-phosphoglycerate kinase (PGK) arose through recombination between a preexisting gene of the eukaryotic host nucleus for the cytosolic enzyme and an endosymbiont-derived gene for the chloroplast enzyme. We readdressed the evolution of eukaryotic pgk genes through isolation and characterisation of a pgk gene from the extreme halophilic, photosynthetic archaebacterium Haloarcula vallismortis and analysis of PGK sequences from the three urkingdoms. A very high calculated net negative charge of 63 for PGK from H. vallismortis was found which is suggested to result from selection for enzyme solubility in this extremely halophilic cytosol. We refute the recombination hypothesis proposed for the origin of plant PGK isoenzymes. The data indicate that the ancestral gene from which contemporary homologues for the Calvin cycle/glycolytic isoenzymes in higher plants derive was acquired by the nucleus from (endosymbiotic) eubacteria. Gene duplication subsequent to separation of Chlamydomonas and land plant lineages gave rise to the contemporary genes for chloroplast and cytosolic PGK isoenzymes in higher plants, and resulted in replacement of the preexisting gene for PGK of the eukaryotic cytosol. Evidence suggesting a eubacterial origin of plant genes for PGK via endosymbiotic gene replacement indicates that plant nuclear genomes are more highly chimaeric, i.e. contain more genes of eubacterial origin, than is generally assumed.Abbreviations PGK 3-phosphoglycerate kinase - FBA fructose-1,6-bisphosphate aldolase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - TPI triosephosphate isomerase  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号