首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   7篇
  国内免费   3篇
  2023年   3篇
  2022年   9篇
  2021年   2篇
  2020年   2篇
  2019年   10篇
  2018年   19篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   41篇
  2013年   44篇
  2012年   29篇
  2011年   39篇
  2010年   32篇
  2009年   15篇
  2008年   15篇
  2007年   16篇
  2006年   12篇
  2005年   9篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1988年   1篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有359条查询结果,搜索用时 156 毫秒
31.
Gonon EM  Skalski M  Kean M  Coppolino MG 《FEBS letters》2005,579(27):6169-6178
In the present study, we examined the role of soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic in the formation of focal adhesions during cell spreading. CHO-K1 cells expressing a dominant-negative form of N-ethylmaleimide-sensitive factor (E329Q-NSF) were unable to spread as well as control cells and they formed focal adhesions (FAs) that were larger than those in control cells. FA formation was impaired in cells transfected with a dominant-negative form of RhoA, but, significantly, not in cells simultaneously expressing dominant-negative NSF. Treatment of E329Q-NSF-expressing cells with the ROCK inhibitor Y-27632 did inhibit FA formation. The results are consistent with a model of cell adhesion in which SNARE-mediated membrane traffic is required for both the elaboration of lamellipodia and the modulation of biochemical signals that control RhoA-mediated FA assembly.  相似文献   
32.
The results of a comparative study of two thermostable (1-->4)-beta-xylan endoxylanases using a multi-technical approach indicate that a GH11 xylanase is more useful than a GH10 xylanase for the upgrading of wheat bran into soluble oligosaccharides. Both enzymes liberated complex mixtures of xylooligosaccharides. 13C NMR analysis provided evidence that xylanases cause the co-solubilisation of beta-glucan, which is a result of cell-wall disassembly. The simultaneous use of both xylanases did not result in a synergistic action on wheat bran arabinoxylans, but instead led to the production of a product mixture whose profile resembled that produced by the action of the GH10 xylanase alone. Upon treatment with either xylanase, the diferulic acid levels in residual bran were unaltered, whereas content in ferulic and p-coumaric acids were unequally decreased. With regard to the major differences between the enzymes, the products resulting from the action of the GH10 xylanase were smaller in size than those produced by the GH11 xylanase, indicating a higher proportion of cleavage sites for the GH10 xylanase. The comparison of the kinetic parameters of each xylanase using various alkali-extractable arabinoxylans indicated that the GH10 xylanase was most active on soluble arabinoxylans. In contrast, probably because GH11 xylanase can better penetrate the cell-wall network, this enzyme was more efficient than the GH10 xylanase in the hydrolysis of wheat bran. Indeed the former enzyme displayed a nearly 2-fold higher affinity and a 6.8-fold higher turnover rate in the presence of this important by-product of the milling industry.  相似文献   
33.
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5–10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.  相似文献   
34.
Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin D. Expression of CYP24A1 is up-regulated to attenuate vitamin D signaling associated with calcium homeostasis and cellular growth processes. The development of therapeutics for disorders linked to vitamin D insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here, we report the crystal structure of rat CYP24A1 at 2.5 Å resolution. The structure exhibits an open cleft leading to the active-site heme prosthetic group on the distal surface that is likely to define the path of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic residues on helices A′ and G′, suggesting a mode of insertion into the inner mitochondrial membrane. A docking model for 1α,25-dihydroxyvitamin D3 binding in the open form of CYP24A1 that clarifies the structural determinants of secosteroid recognition and validates the predictive power of existing homology models of CYP24A1 is proposed. Analysis of CYP24A1's proximal surface identifies the determinants of adrenodoxin recognition as a constellation of conserved residues from helices K, K″, and L that converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1 structure provides the first template for understanding membrane insertion, substrate binding, and redox partner interaction in mitochondrial P450s.  相似文献   
35.
Integrins mediate the interaction between cells and extracellular matrix by assembling adhesive structures that need to be dynamically modulated to allow cell motility. We have recently identified liprin-α1 as an essential regulator of integrin dynamics required for efficient cell motility. Here we investigated the effects of liprin-α1 expression on β1 integrin receptors. We found that increased levels of liprin-α1 affected the localization of inactive, low-affinity integrins, while increasing the average size of β1 integrin-positive focal adhesions. Although a direct interaction between β1 integrins and liprin-α1 could not be revealed biochemically, a striking colocalization between redistributed inactive β1 integrins and liprin-α1 was observed. The tight association of overexpressed and endogenous liprin-α1 to the cytoplasmic side of the ventral plasma membrane suggested a possible role of liprin in stabilizing integrin receptors at the cell surface. In support of this hypothesis, we demonstrated an inhibitory effect of liprin overexpression on antibody-induced β1 integrin internalization. On the other hand, depletion of endogenous liprin-α by small interfering RNA increased the rate of integrin internalization. Overall, these results support the hypothesis that liprin-α1 exerts its action on focal adhesion turnover by influencing the localization and stability of integrin receptors at the cell surface.  相似文献   
36.
Lysophosphatidylcholine rapidly paralyses the neuromuscular junction (NMJ), similarly to snake phospholipase A2 neurotoxins, implicating a lipid hemifusion-pore transition in neuroexocytosis. The mode and kinetics of NMJ paralysis of different lysophospholipids (lysoPLs) in high or low [Mg2+] was investigated. The following order of potency was found: lysophosphatidylcholine>lysophosphatidylethanolamine>lysophosphatidic acid>lysophosphatidylserine>lysophosphatidylglycerol. The latter two lysoPLs closely mimic the profile of paralysis caused by the toxins in high [Mg2+]. This paralysis is fully reversed by albumin washing. These findings provide novel insights on the mode of action of snake neurotoxins and qualify lysoPLs as novel agents to study neuroexocytosis.  相似文献   
37.
Lipocalins, a widespread multifunctional family of small proteins (15-25kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183-188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar K(d) range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar K(d) range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane.  相似文献   
38.
Ectopic fat accumulation has been linked to lipotoxic events, including the development of insulin resistance in skeletal muscle. Indeed, intramyocellular lipid storage is strongly associated with the development of type 2 diabetes. Research during the last two decades has provided evidence for a role of lipid intermediates like diacylglycerol and ceramide in the induction of lipid-induced insulin resistance. However, recently novel data has been gathered that suggest that the relation between lipid intermediates and insulin resistance is less straightforward than has been previously suggested, and that there are several routes towards lipid-induced insulin resistance. For example, research in this field has shifted towards imbalances in lipid metabolism and lipid droplet dynamics. Next to imbalances in key lipogenic and lipolytic proteins, lipid droplet coat proteins appear to be essential for proper intramyocellular lipid storage, turnover and protection against lipid-induced insulin resistance.Here, we discuss the current knowledge on lipid-induced insulin resistance in skeletal muscle with a focus on the evidence from human studies. Furthermore, we discuss the available data that provides supporting mechanistic information.  相似文献   
39.
The relationship between the formation of cell wall-bound ferulic acid (FA) and diferulic acid (DFA) and the change in activities of phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) was studied in rice shoots. The length and the fresh mass of shoots increased during the growth period from day 4 to 6, while coleoptiles ceased elongation growth on day 5. The amounts of FA and DFA isomers as well as cell wall polysaccharides continued to increase during the whole period. The activities of PAL and CW-PRX greatly increased in the same manner during the period. There were close correlations between the PAL activity and ferulate content or between the CW-PRX activity and DFA content. The expression levels of investigated genes for PAL and putative CW-PRX showed good accordance with the activities of these enzymes. These results suggest that increases in PAL and CW-PRX activities are cooperatively involved in the formation of ferulate network in cell walls of rice shoots and that investigated genes may be, at least in part, associated with the enzyme activities. The substantial increase in such network probably causes the maturation of cell walls and thus the cessation of elongation growth of coleoptiles.  相似文献   
40.
Cenococcum geophilum is a widely distributed ectomycorrhizal fungus potentially playing a significant role in resistance and resilience mechanisms of its tree hosts exposed to drought stress. In this study, we performed a large scale protein analysis in pure cultures of C. geophilum in order to gain first global insights into the proteome assembly of this fungus. Using 1-D gel electrophoresis coupled with ESI-MS/MS, we indentified 638 unique proteins. Most of these proteins were related to the metabolic and cellular processes, and the transport machinery of cells. In a second step, we examined the influence of water deprivation on the proteome of C. geophilum pure cultures at three time points of gradually imposed drought. The results indicated that 12 proteins were differentially abundant in mycelia subjected to drought compared to controls. The induced responses in C. geophilum point towards regulation of osmotic stress, maintainance of cell integrity, and counteracting increased levels of reactive oxygen species formed during water deprivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号