首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  国内免费   6篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   11篇
  2007年   1篇
  2006年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
51.
《Biologicals》2014,42(1):1-7
Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell–cell and cell–surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review.  相似文献   
52.
In this paper the utilization of the cyanobacteria Anabaena sp. in carbon dioxide removal processes is evaluated. For this, continuous cultures of this strain were performed at different dilution rates; alternatives for the recovery of the organic matter produced being also studied. A maximum CO2 fixation rate of 1.45 g CO2 L−1 day−1 was measured experimentally, but it can be increased up to 3.0 g CO2 L−1 day−1 outdoors. The CO2 is mainly transformed into exopolysaccharides, biomass representing one third of the total organic matter produced. Organic matter can be recovered by sedimentation with efficiencies higher than 90%, the velocity of sedimentation being 2 · 10−4 s−1. The major compounds were carbohydrates and proteins with productivities of 0.70 and 0.12 g L−1 day−1, respectively. The behaviour of the cultures of Anabaena sp. has been modelized, also the characteristics parameters requested to design separation units being reported. Finally, to valorizate the organic matter as biofertilizers and biofuels is proposed.  相似文献   
53.
Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.  相似文献   
54.
A novel approach to the quantification of extracellular polysaccharides in miniaturized biofilms presenting a wide variety of extracellular matrices was developed. The assay used the periodic acid–Schiff reagent and was first calibrated on dextran and alginate solutions. Then it was implemented on 24-h and 48-h biofilms from three strains known to produce different exopolymeric substances (Pseudomonas aeruginosa, Bacillus licheniformis, Weissella confusa). The assay allowed quantification of the total exopolysaccharides, taking into account possible interferences due to cells or other main expolymers of the matrix (eDNA, proteins).  相似文献   
55.
The intention of the study was evaluated for purification and characterization of exopolysaccharides from Lactobacillus paracasei; was isolated from homemade Sauerkraut sample collected from Sivakasi, Tamil Nadu, India, confirmed by biochemical and gene sequencing (16S rRNA). The purification and characterization of exopolysaccharides from candidate bacterium were studied on appearance, solubility of the EPS, carbohydrate estimation, emulsifying activity, sulphate, protein, uronic acid content, FTIR, HPLC and GC-MS analysis. The percentage of elemental carbon, (54.36%) hydrogen (21.74%), nitrogen (9.63%) and sulphur content (18.03%) were recorded in exopolysaccharides. The emulsification index (E24) of EPS was higher in toluene (79.20) and benzene (78.867) supplemented medium. FTIR spectrum of the candidate bacterial EPS confirmed presence of sulphate compounds, carboxyl group, and hydrogen bonded compounds etc. EPS exhibited 76.34% of Total Antioxidant Capacity (TAC), 71.15% of reducing power, 68.65% of Hydrogen Peroxide scavenging activity and also 60.31% DPPH radical scavenging activity. The potential antioxidant properties observed in exopolysaccharides from Lactobacillus paracasei is considered as valuable drugs.  相似文献   
56.
Abstract The pattern of polysaccharide production amongst strains of Rhizobium phaseoli appear very varied: some strains produce anionic exopolysaccharides (EPS) as major polysaccharides (EPS) as major polymer without any other product, but most strains exhibit greater polysaccharide diversity. Apart from EPS they excrete capsular polysaccharides (CPS) and accumulate poly-β-hydroxybutyric acid (PHB) and/or glycogen in their cells. The latter can then be used as C-sources for further synthesis of EPS and CPS. Some strains are only very poor producers or do not produce at all. Nine strains of R. phaseoli have been analysed and shown to possess the K-36 type of polysaccharide (EPS), as do strains of R. leguminosarum (6 strains) and R. trifolli (9 strains). Three strains of R. phaseoli have been found to possess the K-87 type of polysaccharide and types K-38 and K-44 polysaccharides have only been found in their own type strains.  相似文献   
57.
The exopolysaccharides (EPS) of two unicellular strains of cyanobacteria Synechocystis PCC 6803 and 6714, formed labile, radial structures, uniformly distributed on the cell surface, and stainable by specific dyes for acidic polysaccharides. The two strains produced EPS at similar rates, which depended, along with the duration of the producing phase, on the incubation conditions. The exopolysaccharides from both strains were constituted of at least 11–12 mono-oses, probably forming several types of polymers. They contained about 15–20% (w/w) uronic derivatives and 10–15% (w/w) osamines. Proteins represented 20–40% of total weight. A most interesting feature was the presence of 7–8% (molar ratio) sulphate residues, a characteristic that is otherwise limited to exopolysaccharides produced by eukaryotic algae.Abbreviations EPS exopolysaccharides - KDO 3-deoxy-d-mannooctulosonate - LPS lipopolysaccharides  相似文献   
58.
The search for new, biotechnologically useful yeast strains has been carried out in many research centers in the world. Sporobolomyces and Sporidiobolus are examples of such useful yeasts, that can be used as a source of many valuable metabolites in industries. This article describes the modern taxonomy of these yeasts, which resulted from many years of research, including both classical microbiology and genetic analyses. Subsequently, the paper presents a review of scientific studies on the biosynthesis of various extracellular and intracellular metabolites produced by Sporobolomyces and Sporidiobolus yeasts, which are of great importance in the contemporary food, feed, and pharmaceutical industries. Such metabolites include exopolysaccharides, lipids, carotenoids, enzymes, and γ-decalactone. Aiming at developing a sustainable circular bioeconomy, this study considers two directions of use of these yeasts, i.e., as a feed additive and as an antagonist in the biocontrol of plant materials. This article is one of the first to organize the knowledge collected from published studies and present the contemporary scientific achievements and prospects for the biotechnological use of Sporobolomyces and Sporidiobolus yeasts.  相似文献   
59.
60.
Two strains of Leptolyngbya isolated from Roman hypogea were studied in order to characterise the ultrastructural features of the sheath and its composition in exopolysaccharides. Cytochemical stains used in light and transmission electron microscopy allowed detection of the presence of carboxylic groups within the sheath, composed by two different layers. The composition in monosaccharides of three fractions (released, hot and cold capsular polysaccharides) extracted from cultures was determined by reverse phase-high performance liquid chromatography, while the behaviour of the fractions at various pH values was studied by using the circular dichroism. The cytochemical and physico-chemical characterisation of exopolysaccharides should help both the conservation of lithic surfaces of artistic interest and the taxonomic identification of Leptolyngbya strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号