首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   29篇
  国内免费   29篇
  2023年   9篇
  2022年   27篇
  2021年   29篇
  2020年   27篇
  2019年   31篇
  2018年   28篇
  2017年   13篇
  2016年   18篇
  2015年   23篇
  2014年   46篇
  2013年   70篇
  2012年   30篇
  2011年   62篇
  2010年   31篇
  2009年   41篇
  2008年   43篇
  2007年   61篇
  2006年   36篇
  2005年   34篇
  2004年   33篇
  2003年   40篇
  2002年   36篇
  2001年   26篇
  2000年   18篇
  1999年   12篇
  1998年   10篇
  1997年   15篇
  1996年   19篇
  1995年   30篇
  1994年   19篇
  1993年   11篇
  1992年   16篇
  1991年   7篇
  1990年   15篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   5篇
  1985年   13篇
  1984年   16篇
  1983年   11篇
  1982年   10篇
  1981年   12篇
  1980年   15篇
  1979年   9篇
  1977年   7篇
  1976年   9篇
  1975年   7篇
  1974年   6篇
  1973年   7篇
排序方式: 共有1130条查询结果,搜索用时 15 毫秒
41.
42.
43.
《Free radical research》2013,47(5):283-290
The ability of pyruvate to protect the eye lens against physiological damage by hydrogen peroxide has been studied. The physiological damage was estimated in terms of a decrease in the ability of the lens to transport rubidium against an electrochemical gradient under organ culture conditions. Peroxide was either added directly to the culture medium or generated therein by incorporation of xanthine and xanthine oxidase. In both these cases, addition of pyruvate to the medium led to a greater accumulation of rubidium by the lens. The net accumulation of this cation in the presence of 1 to 5 mM pyruvate from the medium containing peroxide (0.2 to 0.45 mM) was very close to that observed in the absence of peroxide. The protective effect was thus substantial. The mechanism of the pyruvate effect has been discussed, and seems to be related to the scavenging of peroxide by pyruvate.  相似文献   
44.
Reactive oxygen species (ROS) released from polymorphonuclear leukocytes and macrophages could cause DNA damage, but also induce cell death. Therefore inhibition of cell death must be an important issue for accumulation of genetic changes in lymphoid cells in inflammatory foci. Scavengers in the post culture medium of four lymphoid cell lines, lymphoblastoid cell lines (LCL), Raji, BJAB and Jurkat cells, were examined. Over 80% of cultured cells showed cell death 24 h after xanthine (X)/xanthine oxidase (XOD) treatment, which was suppressed by addition of post culture medium from four cell lines in a dose-dependent manner. H2O2 but not O·-2 produced by the X/XOD reaction was responsible for the cytotoxity, thus we used H2O2 as ROS stress thereafter. The H2O2-scavenging activity of post culture media from four cell lines increased rapidly at the first day and continued to increase in the following 2–3 days for LCL, Raji and BJAB cells. The scavenging substance was shown to be pyruvate, with various concentrations in the cultured medium among cell lines. Over 99% of total pyruvate was present in the extracellular media and less than 1% in cells. α-Cyano-4-hydroxycinnamate, a specific inhibitor of the H+-monocarbohydrate transporter, increased the H2O2-scavenging activity in the media from all four cell lines via inhibition of pyruvate re-uptake by cultured cells from the media. These findings suggest that lymphoid cells in inflammatory foci could survive even under ROS by producing pyruvate, so that accumulation of lymphoid cells with DNA damage is possible.  相似文献   
45.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
46.
Bardet–Biedl Syndrome is a multisystem autosomal recessive disorder characterized by central obesity, polydactyly, hypogonadism, learning difficulties, rod-cone dystrophy and renal dysplasia. Bardet–Biedl Syndrome has a prevalence rate ranging from 1 in 100,000 to 1 in 160,000 births although there are communities where Bardet–Biedl Syndrome is found at a higher frequency due to consanguinity. We report here a Pakistani consanguineous family with two affected sons with typical clinical features of Bardet–Biedl Syndrome, in addition to abnormal liver functioning and bilateral basal ganglia calcification, the latter feature being typical of Fahr's disease. Homozygous regions obtained from SNP array depicted three known genes BBS10, BBS14 and BBS2. Bidirectional sequencing of all coding exons by traditional sequencing of all these three genes showed a homozygous deletion of 10 nucleotides (c.1958_1967del), in BBS10 in both affected brothers. The segregation analysis revealed that the parents, paternal grandfather, maternal grandmother and an unaffected sister were heterozygous for the deletion. Such a large deletion in BBS10 has not been reported previously in any population and is likely to be contributing to the phenotype of Bardet–Biedl Syndrome in this family.  相似文献   
47.
Abstract

Corynebacterium glutamicum and its close relatives, C. flavum and C. lactofennentum, have been used for over 3 decades in the industrial production of amino acids by fermentation. Since 1984, several research groups have started programs to develop metabolic engineering principles for amino acid-producing Corynebacferium strains. Initially, the programs concentrated on the isolation of genes encoding (deregulated) biosynthetic enzymes and the development of general molecular biology tools such as cloning vectors and DNA transfer methods. With most of the genes and tools now available, recombinant DNA technology can be applied in strain improvement. To accomplish these improvements, it is critical and advantageous to understand the mechanisms of gene expression and regulation as well as the biochemistry and physiology of the species being engineered. This review explores the advances made in the understanding and application of amino acid-producing bacteria in the early 1990s.  相似文献   
48.
49.
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (PN) and stomatal conductance (gs). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.  相似文献   
50.
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号