首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   4篇
  国内免费   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   13篇
  2006年   9篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
排序方式: 共有164条查询结果,搜索用时 296 毫秒
131.
玉米穗行数QTL及其互作分析   总被引:2,自引:0,他引:2  
利用与穗行数有关的5个导入系及轮回亲本综3进行GriffingⅣ双列杂交发展分离群体,结合SSR标记和田间表型鉴定,分析玉米穗行数QTL及其相互作用。在导入系×综3所发展的5个F2群体中,仅在一个群体中检测到1个穗行数QTL,所解释的表型变异为10.68%。在导入系间杂交所发展的F2群体中检测到9个QTLs,分别位于第1、3、8染色体上,所解释的表型变异在4.53%-6.52%之间。另外,检测到2对QTL间互作,10对QTL与未检测到QTL的导入片段间的互作,单个F2群体中各类互作所解释的表型变异显著大于QTL所解释的表型变异。这些结果表明,基因互作在玉米穗行数形成中起着重要的作用。  相似文献   
132.
Quantitative trait values for seed oil and protein content or for maturity were measured in recombinant inbred lines (RIL) of soybean derived from a cross between two soybean cultivars: Minsoy PI 27890 and Noir 1 PI 290136. Seed oil was found to be inversely correlated to protein content. By analyzing DNA from plants with extreme phenotypes, we were able to identify quantitative trait loci (QTL) for these traits as being linked to several restriction fragment length polymorphism (RFLP) loci, including R183 for oil and protein content and R79 for maturity. Cumulative distributions of trait values were graphed for those RIL with Minsoy alleles and for those with Noir 1 alleles. As already suggested by the alleles found associated with extreme phenotypes, the distributions were consistent with an independent and additive expression of the maturity QTL linked to R79. That is, the cumulative distributions for plants with Minsoy alleles and for plants with Noir 1 alleles were similar in shape, but the entire Noir 1 curve had been shifted to later maturity dates. In contrast, the trait distributions for a locus affecting oil and protein content linked to R183 were not compatible with an additive model. These results suggest that this approach can be used for rapid identification of QTLs with epistatic expression.  相似文献   
133.
Studies of inbreeding depression in wild plants customarily compare the fitness of outcrossed progeny to progeny derived from one generation of self-pollination. We compare levels of inbreeding depression in a greenhouse in two populations of jewelweed using progeny derived from random outcrosses, one generation of self-pollination, and three generations of selling. The progeny have expected inbreeding coefficients of, respectively, 0, 0.5, and 0.875. Seedling survivorship declined linearly with the level of inbreeding in both populations. Inbreeding also increased the variability of emergence date. Maternal family membership affected early seedling performance and often interacted significantly with the level of inbreeding. In contrast, path analyses reveal that inbreeding had both negative linear and positive quadratic direct effects on seed and final plant weight, causing the highly inbred progeny to outperform progeny derived from one generation of selfing. These results suggest either the rapid purging of deleterious alleles or diminishing epistasis among the loci affecting these characters. It is not clear why the loci affecting survival responded differently.  相似文献   
134.
135.
Rego C  Santos M  Matos M 《Genetica》2007,131(2):167-174
The role of dominance and epistasis in population divergence has been an issue of much debate ever since the neoDarwinian synthesis. One of the best ways to dissect the several genetic components affecting the genetic architecture of populations is line cross analysis. Here we present a study comparing generation means of several life history-traits in two closely related Drosophila species: Drosophila subobscura, D. madeirensis as well as their F 1 and F 2 hybrids. This study aims to determine the relative contributions of additive and non-additive genetic parameters to the differentiation of life-history traits between these two species. The results indicate that both negative dominance and epistatic effects are very important in the differentiation of most traits. We end with considerations about the relevance of these findings for the understanding of the role of non-additive effects in speciation.  相似文献   
136.
Summary The relationship between heterozygosity and the expression of heterosis at two different nutrition levels was investigated using Drosophila melanogaster. Average daily egg production and egg hatchability were measured in two parental strains and in F1, F2 and reciprocal backcross generations. Heterosis was more pronounced in the poor nutritional conditions. Two electrophoretic markers used to estimate the level of heterozygosity in F2 and backcrosses revealed an excess of heterozygous genotypes. Quantitative genetic effects (an additive line effect and individual and maternal heterosis) were estimated for both traits in the two environments. Although this model gave a reasonable fit in most cases, some epistatic interaction would have to be invoked in order to explain fully the results.  相似文献   
137.
Summary Zeins, the major endosperm proteins in maize (Zea mays L.), are deficient in the essential amino acids lysine and tryptophan. Some mutant genes, like opaque-2 (o2) and floury-2 (fl2), reduce the levels of A- and B-zeins, thereby improving maize's nutritional value. Other mutants, such as amylose-extender (ae), floury-1 (fl1), soft starch (h), dull-1 (du), shrunken-1 (sh1), sugary-1 (su1), sugary-2 (su2), and waxy (wx), primarily affect starch composition, but also alter zein composition. We undertook this study to examine the effects of some of these mutant genes on A/B-zein composition and to study the interactions of these genes in double-mutant combinations. Endosperm prolamins were extracted from inbred B37, ten near-isogenic single mutants (ae, du, fl1, fl2, h, o2, sh1, su1, su2, and wx), and most double-mutant combinations. Zeins in these extracts were fractionated by reversed-phase highperformance liquid chromatography (RP-HPLC) into 22–24 peaks. Of the resulting 22 major peaks the areas of 16 (per milligram endosperm) were significantly affected by individual mutant genes relative to the zein composition of the normal inbred. In combination these genes exhibited significant epistatic interactions in regulating the expression of individual A/B zeins. Epistatic interactions were judged to be significant when the amount of a peak in a double mutant differed from the averages for the peak in the two respective single mutants. The o2 gene, alone and in combination with other mutant genes, significantly decreased the amounts of many individual zeins. The effect of the o2 gene was the greatest of all the genes examined. Various clustering techniques were used to see if mutant effects could be grouped; among these was principal component analysis, a multivariate statistical technique that analyzes all peak sizes simultaneously. Three-dimensional scatter graphs were constructed based on the first three principal components. For the single mutants, these showed no relationships to gene actions; for the double mutants, however, this technique showed that four single mutants, o2, sh1, su1 and su2, had the greatest effects on zein composition when combined with each other and with the remaining six single mutants.Presented at the XVI International Congress of Genetics, Toronto, Canada, August 20–27, 1988. The mention of firm names or trade products does not imply that they are endorsed or recommended by the USDA over other brands or similar products not mentioned  相似文献   
138.
Soybean [Glycine max (L.) Merr.] PI486355 is resistant to all the identified strains of soybean mosaic virus (SMV) and possesses two independently inherited resistance genes. To characterize the two genes, PI486355 was crossed with the susceptible cultivars Lee 68 and Essex and with cultivars Ogden and Marshall, which are resistant to SMV-G1 but systemically necrotic to SMV-G7. The F2 populations and F23 progenies from these crosses were inoculated with SMV-G7 in the greenhouse. The two resistance genes were separated in two F34 lines, LR1 and LR2, derived from Essex x PI486355. F1 individuals from the crosses of LR1 and LR2 with Lee 68, Ogden, and York were tested with SMV-G7 in the greenhouse; the F2 populations were tested with SMV-G1 and G7. The results revealed that expression of the gene in LR1 is gene-dosage dependent, with the homozygotes conferring resistance but the heterozygotes showing systemic necrosis to SMV-G7. This gene was shown to be an allele of the Rsv1 locus and was designated as Rsv1-s. It is the only allele identified so far at the Rsv1 locus which confers resistance to SMV-G7. Rsv1-s also confers resistance to SMV-G1 through G4, but results in systemic necrosis with SMV-G5 and G6. The gene in LR2 confers resistance to strains SMV-G1 through G7 and exhibits complete dominance. It appears to be epistatic to genes at the Rsv1 locus, inhibiting the expression of the systemic necrosis conditioned by the Rsv1 alleles. SMV-G7 induced a pin-point necrotic reaction on the inoculated primary leaves in LR1 but not in LR2. The unique genetic features of the two resistance genes from PI486355 will facilitate their proper use and identification in breeding and contribute to a better understanding of the interaction of SMV strains with soybean resistance genes.  相似文献   
139.
Central to Wright's shifting-balance theory is the idea that genetic drift and selection in systems with gene interaction can lead to the formation of “adaptive gene complexes.” The theory of genetic drift has been well developed over the last 60 years; however, nearly all of this theory is based on the assumption that only additive gene effects are acting. Wright's theory was developed recognizing that there was a “universality of interaction effects,” which implies that additive theory may not be adequate to describe the process of differentiation that Wright was considering. The concept of an adaptive gene complex implies that an allele that is favored by individual selection in one deme may be removed by selection in another deme. In quantitative genetic terms, the average effects of an allele relative to other alleles changes from deme to deme. The model presented here examines the variance in local breeding values (LBVs) of a single individual and the covariance in the LBVs of a pair of individuals mated in the same deme relative to when they are mated in different demes. Local breeding value is a measure of the average effects of the alleles that make up that individual in a particular deme. I show that when there are only additive effects the covariance between the LBVs of individuals equals the variance in the LBV of an individual. As the amount of epistasis in the ancestral population increases, the variance in the LBV of an individual increases and the covariance between the LBVs of a pair of individuals decreases. The divergence in these two values is a measure of the extent to which the LBV of an individual varies independently of the LBVs of other individuals. When this value is large, it means that the relative ordering of the average effects of alleles will change from deme to deme. These results confirm an important component of Wright's shifting-balance theory: When there is gene interaction, genetic drift can lead to the reordering of the average effects of alleles and when coupled with selection this will lead to the formation of the adaptive gene complexes.  相似文献   
140.
Summary The genetic parameters of two quantitative traits, 13-day larval weight and pupal weight, in Tribolium populations developed by reciprocal recurrent selection (RRS) and by within-line purebred selection (WLS) were compared each with the other and also with the parameters of the unselected base populations using the genetic model of Carbonell, Nyquist and Bell. The variability for two and three-way crosses of inbred lines derived from companion populations (two strains, breeds, or varieties used for a terminal cross or hybrid) was analyzed into genetic effects: autosomal additivity (* g), autosomal heterosis (* s), sex-linked additivity (L), sex-linked heterosis (LL), general maternal (m), specific maternal or reciprocal (r), additive by additive epistasis (aa), and deviations from the model due, among other causes, to higher order epistasis (dev). One series of crosses involved companion populations with diverse origins. For contrast, a second series of crosses involved companion populations originating from a common heterogenous base population. For the heterotic trait larval weight, * g and * s effects were equally important and accounted for over 50% of the total variation. The aa epistasis contributed another 20% and was followed in importance by higher order epistasis and general maternal effects. For the more highly heritable trait, pupal weight, * g effects were most important with * s, aa, and m effects having smaller but significant influences. Sex-linked and reciprocal effects were statistically significant for many crosses, but they were relatively unimportant overall. In general, the unselected base populations showed higher * g variation than either RRS or WLS populations with the reverse true for * s effects. In agreement with theoretical expectations, RRS was more effective than WLS in exploiting * s effects. The aa epistatic effects for larval weight were of major importance in the unselected populations, but RRS and WLS did not differ significantly for exploiting superior aa gene combinations. Companion populations with diverse origins revealed significantly larger variation due to * g and * s effects in crosses than did populations initiated from a common heterogeneous base.Journal Paper No. 11559 from Purdue University Agricultural Experimental Station  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号