首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   3篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   8篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   14篇
  2012年   4篇
  2011年   12篇
  2010年   3篇
  2009年   14篇
  2008年   15篇
  2007年   12篇
  2006年   17篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   6篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
61.
We have shown that gastrin-releasing peptide-29 (GRP-29), the large molecular form of GRP in rats, reduces meal size (MS, intake of 10% sucrose solution) and prolongs the intermeal interval (IMI). In these studies, we first investigated possible pathways for these responses in rats undergoing total subdiaphragmatic vagotomy (VGX, removal of vagal afferent and efferent innervation of the gut), celiaco-mesenteric ganglionectomy (CMGX, removal of splanchnic afferent and efferent innervation of the gut) and combined VGX and CMGX. Second, we examined if the duodenum communicates the feeding signals (MS and IMI) of GRP-29 (0, 0.3, 1.0, 2.1, 4.1, 10.3 and 17.2 nmol/kg) with the feeding control areas of the hindbrain by performing duodenal myotomy (MYO), a procedure that severs some layers of the duodenal wall including the vagal, splanchnic and enteric neurons. We found that GRP-29 (2.1, 4.1, 10.3, 17.2 nmol/kg) reduced the size of the first meal (10% sucrose) and (1, 4.1, 10.3 nmol/kg) prolongs the first IMI but did not affect the subsequent meals or IMIs. In addition, CMGX and combined VGX/CMGX attenuated reduction of MS by GRP-29 and all surgeries attenuated the prolongation of the IMI. Therefore, reduction of MS and prolongation of IMI by GRP-29 require vagal and splanchnic nerves, and the duodenum is the major conduit that communicates prolongation of IMI by GRP-29 with the brain.  相似文献   
62.
The requirement for SOX10 and endothelin-3/EDNRB signalling pathway during enteric nervous system (ENS) and melanocyte development, as well as their alterations in Waardenburg-Hirschsprung disease (hypopigmentation, deafness and absence of enteric ganglia) are well established. Here, we analysed the genetic interactions between these genes during ENS and melanocyte development. Through phenotype analysis of Sox10;Ednrb and Sox10;Edn3 double mutants, we show that a coordinate and balanced interaction between these molecules is required for normal ENS and melanocyte development. Indeed, double mutants present with a severe increase in white spotting, absence of melanocytes within the inner ear, and in the stria vascularis in particular, and more severe ENS defects. Moreover, we show that partial loss of Ednrb in Sox10 heterozygous mice impairs colonisation of the gut by enteric crest cells at all stages observed. However, compared to single mutants, we detected no apoptosis, cell proliferation or overall neuronal or glial differentiation defects in neural crest cells within the stomach of double mutants, but apoptosis was increased in vagal neural crest cells outside of the gut. These data will contribute to the understanding of the molecular basis of ENS, pigmentation and hearing defects observed in mouse mutants and patients carrying SOX10, EDN3 and EDNRB mutations.  相似文献   
63.
The enteric nervous system (ENS) forms from migrating neural crest-derived precursors that differentiate into neurons and glia, aggregate into ganglion cell clusters, and extend neuronal processes to form a complex interacting network that controls many aspects of intestinal function. Bone morphogenetic proteins (BMPs) have diverse roles in development and influence the differentiation, proliferation, and survival of ENS precursors. We hypothesized that BMP signaling might also be important for the ENS precursor migration, ganglion cell aggregation, and neurite fasciculation necessary to form the enteric nervous system. We now demonstrate that BMP signaling restricts murine ENS precursors to the outer bowel wall during migration. In addition, blocking BMP signaling causes faster colonization of the murine colon, reduces ganglion cell aggregation, and reduces neurite fasciculation. BMP signaling also influences patterns of neurite extension within the developing bowel wall. These effects on ENS precursor migration and neurite fasciculation appear to be mediated at least in part by increased polysialic acid addition to neural cell adhesion molecule (Ncam1) in response to BMP. Removing PSA enzymatically reverses the BMP effects on ENS precursor migration and neurite fasciculation. These studies demonstrate several novel roles for BMP signaling and highlight new functions for sialyltransferases in the developing ENS.  相似文献   
64.
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.  相似文献   
65.
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2–4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm2 for myenteric neurons, 750 μm2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons. This work was supported by grants from the Ricerca Fondamentale Orientata (RFO) and Fondazione Del Monte di Bo e Ra.  相似文献   
66.
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Salmonella enterica serovar Typhimurium and Escherichia coli many Tat substrates are known or predicted to bind a molybdenum cofactor in the cytoplasm prior to export. In the case of N- and S-oxide reductases, co-ordination of molybdenum cofactor insertion with protein export involves a ‘Tat proofreading’ process where chaperones of the TorD family bind the signal peptides, thus preventing premature export. Here, a genetic approach was taken to determine factors required for selenate reductase activity in Salmonella and E. coli. It is reported for both biological systems that an active Tat translocase and a TorD-like chaperone (DmsD) are required for complete in vivo reduction of selenate to elemental red selenium. Further mutagenesis and in vitro biophysical experiments implicate the Salmonella ynfE gene product, and the E. coli YnfE and YnfF proteins, as putative Tat-targeted selenate reductases.  相似文献   
67.
This study investigates the gastroprokinetic effects of motilin and erythromycin A (EM-A) and its potential mechanism in guinea pigs Cavia porcellus in vitro. Guinea pig stomach strips were mounted under organ baths containing Krebs solution. Motilin,EM-A,Nω-Nitro-L-arginine (L-NNA),L-arginine (L-AA) were added to the bathing solution in a non-cumulative way. Then the effects of motilin and EM-A was studied during electrical field stimulation (EFS) in the absence and presence of L-NNA and L-AA in the gastri...  相似文献   
68.
The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.  相似文献   
69.
We have generated transgenic zebrafish that express green fluorescent protein (GFP) in glial cells driven by the zebrafish glial fibrillary acidic protein (GFAP) regulatory elements. Transgenic lines Tg(gfap:GFP) were generated from three founders; the results presented here are from the mi2001 line. GFP expression was first visible in the living embryo at the tail bud-stage, then in the developing brain by the 5-somite-stage ( approximately 12 h post-fertilization, hpf) and then spreading posteriorly along the developing spinal cord by the 12-somite stage (approximately 15 hpf). At 24 hpf GFP-expressing cells were in the retina and lens. By 72 hpf GFP expression levels were strong and localized to the glia of the brain, neural retina, spinal cord, and ventral spinal nerves, with moderate expression in the enteric nervous system and weaker levels in the olfactory sensory placode and otic capsule. GFP expression in glia co-localized with anti-GFAP antibodies, but did not co-localize with the neuronal antibodies HuC/D or calretinin in mature neurons.  相似文献   
70.
Vagal neural crest-derived precursors of the enteric nervous system colonize the bowel by descending within the enteric mesenchyme. Perpendicular secondary migration, toward the mucosa and into the pancreas, result, respectively, in the formation of submucosal and pancreatic ganglia. We tested the hypothesis that netrins guide these secondary migrations. Studies using RT-PCR, in situ hybridization, and immunocytochemistry indicated that netrins (netrins-1 and -3 mice and netrin-2 in chicks) and netrin receptors [deleted in colorectal cancer (DCC), neogenin, and the adenosine A2b receptor] are expressed by the fetal mucosal epithelium and pancreas. Crest-derived cells expressed DCC, which was developmentally regulated. Crest-derived cells migrated out of explants of gut toward cocultured cells expressing netrin-1 or toward cocultured explants of pancreas. Crest-derived cells also migrated inwardly toward the mucosa of cultured rings of bowel. These migrations were specifically blocked by antibodies to DCC and by inhibition of protein kinase A, which interferes with DCC signaling. Submucosal and pancreatic ganglia were absent at E12.5, E15, and P0 in transgenic mice lacking DCC. Netrins also promoted the survival/development of enteric crest-derived cells. The formation of submucosal and pancreatic ganglia thus involves the attraction of DCC-expressing crest-derived cells by netrins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号