首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   3篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   8篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   14篇
  2012年   4篇
  2011年   12篇
  2010年   3篇
  2009年   14篇
  2008年   15篇
  2007年   12篇
  2006年   17篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   6篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
251.
《Journal of Asia》2022,25(2):101903
Ceylonitermellus Emerson is a rarely collected soil inhabiting nasute termite endemic to Oriental region with three known species. A fourth species, Ceylonitermellus sahyadriensis sp. nov. is described and illustrated based on morphological characters of soldier and gut morphology of workers. Both the castes have poorly sclerotized body and paler in colour. This is the second species from India and fourth species of the genus from world. The species can be distinguished from the closely related C. periyarensis by the pyriform and shorter head capsule and with other two species of the genus by its larger head capsule as compared to C. kotuae and smaller head capsule as compared to C. hantanae. The new species was collected from tropical evergreen forest from a small colony near the base of a tree.LSID: urn:lsid:zoobank.org:pub:34616357-2CC9-46B2-8B8D-3CFD984CED89.  相似文献   
252.
Survival of enteric bacteria in seawater   总被引:7,自引:0,他引:7  
Enteric bacteria exposed to the marine environment simultaneously encounter a variety of abiotic and biotic challenges. Among the former, light appears to be critical in affecting seawater survival; previous growth history plays a major part in preadaptation of the cells, and stationary phase cells are generally more resistant than exponentially growing ones. Predation, mostly by protozoa, is probably the most significant biotic factor. Using Escherichia coli as a model, a surprisingly small number of genes was found that, when mutated, significantly affect seawater sensitivity of this bacterium. Most prominent among those is rpoS, which was also dominant among genes induced upon transfer to seawater.  相似文献   
253.
A mechanical or chemical stimulus applied to the intestinal mucosa induces motility reflexes in the rat colon. Enteric neurons containing calcitonin gene-related peptide (CGRP) have been suggested as intrinsic primary afferent neurons responsible for mediating such reflexes. In the present study, immunohistochemistry was performed on whole-mount stretch preparations to investigate chemical profiles, morphological characteristics and projections of CGRP-containing neurons in the myenteric plexus of the rat colon. CGRP-positive neuronal cell bodies were detected in preparations incubated with colchicine-containing medium, whereas CGRP-positive nerve fibres were found in colchicine-untreated preparations. These neurons had large oval or round cell bodies that were also immunoreactive for the calcium-binding protein calretinin and neurofilament 200. Myenteric neurons positive for both calretinin and neurofilament 200 had several long processes that emerged from the cell body, consistent with Dogiel type II morphology. Application of the neural tracer DiI to the intestinal mucosa revealed that DiI-labelled myenteric neurons each had an oval or round cell body immunoreactive for calretinin. Thus, CGRP-containing myenteric neurons are Dogiel type II neurons and are immunoreactive for calretinin and neurofilament 200 in the rat colon. These neurons probably project to the intestinal mucosa. This study was supported by a Waseda University Grant for Special Research Projects (2008A-889).  相似文献   
254.
Previous studies have demonstrated that neurofilament proteins are expressed by type II neurons in the enteric plexuses of a range of species from mouse to human. However, two previous studies have failed to reveal this association in the guinea-pig. Furthermore, immunohistochemistry for neurofilaments has revealed neurons with a single axon and spiny dendrites in human and pig but this morphology has not been described in the guinea-pig or other species. We have used antibodies against high- and medium-weight neurofilament proteins (NF-H and NF-M) to re-examine enteric neurons in the guinea-pig. NF-H immunoreactivity occurred in all type II neurons (identified by their IB4 binding) but these neurons were never NF-M-immunoreactive. On the other hand, 17% of myenteric neurons expressed NF-M. Many of these were uni-axonal neurons with spiny dendrites and nitric oxide synthase (NOS) immunoreactivity. NOS immunoreactivity occurred in surface expansions of the cytoplasm that did not contain neurofilament immunoreactivity. Thus, because of their NOS immunoreactivity, spiny neurons had the appearance of type I neurons. This indicates that the apparent morphologies and the morphological classifications of these neurons are dependent on the methods used to reveal them. We conclude that spiny type I NOS-immunoreactive neurons have similar morphologies in human and guinea-pig and that many of these are inhibitory motor neurons. Both type II and neuropeptide-Y-immunoreactive neurons in the submucosal ganglia exhibit NF-H immunoreactivity. NF-M has been observed in nerve fibres, but not in nerve cell bodies, in the submucosa. This work was supported by a grant from the National Health and Medical Council of Australia (grant number 400020).  相似文献   
255.
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.  相似文献   
256.
Protistan parasites have an undisputed global health impact. However, outside of a few key exceptions, e.g. the agent of malaria, most of these infectious agents are neglected as important health threats. The Symposium entitled “Free-living amoebae and neglected pathogenic protozoa: health emergency signals?” held at the European Congress of Protistology in Rome, July 2019, brought together researchers addressing scientific and clinical questions about some of these fascinating organisms. Topics presented included the molecular basis of pathogenicity in Acanthamoeba; genomics of Naegleria fowleri; and epidemiology of poorly diagnosed enteric protistan species, including Giardia, Cryptosporidium, Blastocystis, Dientamoeba. The Symposium aim was to excite the audience about the opportunities and challenges of research in these underexplored organisms and to underline the public health implications of currently under-appreciated protistan infections. The major take home message is that any knowledge that we gain about these organisms will allow us to better address them, in terms of monitoring and treatment, as sources of future health emergencies.  相似文献   
257.
258.
Intestinal microflora plays a pivotal role in the development of the innate immune system and is essential in shaping adaptive immunity. Dysbacteriosis of intestinal microflora induces altered immune responses and results in disease susceptibility. Dendritic cells (DCs), the professional antigen‐presenting cells, have gained increasing attention because they connect innate and adaptive immunity. They generate both immunity in response to stimulation by pathogenic bacteria and immune tolerance in the presence of commensal bacteria. However, few studies have examined the effects of intestinal dysbacteriosis on DCs. In this study, changes of DCs in the small intestine of mice under the condition of dysbacteriosis induced by ceftriaxone sodium were investigated. It was found that intragastric administration of ceftriaxone sodium caused severe dysteriosis in mice. Compared with controls, numbers of DCs in mice with dysbacteriosis increased significantly (P = 0.0001). However, the maturity and antigen‐presenting ability of DCs were greatly reduced. In addition, there was a significant difference in secretion of IL‐10 and IL‐12 between DCs from mice with dysbacteriosis and controls. To conclude, ceftriaxone‐induced intestinal dysbacteriosis strongly affected the numbers and functions of DCs. The present data suggest that intestinal microflora plays an important role in inducing and maintaining the functions of DCs and thus is essential for the connection between innate and adaptive immune responses.  相似文献   
259.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号