首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4252篇
  免费   362篇
  国内免费   151篇
  2024年   12篇
  2023年   63篇
  2022年   72篇
  2021年   183篇
  2020年   174篇
  2019年   268篇
  2018年   222篇
  2017年   142篇
  2016年   111篇
  2015年   190篇
  2014年   321篇
  2013年   585篇
  2012年   284篇
  2011年   211篇
  2010年   177篇
  2009年   149篇
  2008年   163篇
  2007年   164篇
  2006年   146篇
  2005年   119篇
  2004年   102篇
  2003年   98篇
  2002年   100篇
  2001年   83篇
  2000年   56篇
  1999年   57篇
  1998年   50篇
  1997年   54篇
  1996年   40篇
  1995年   28篇
  1994年   56篇
  1993年   33篇
  1992年   30篇
  1991年   28篇
  1990年   9篇
  1989年   12篇
  1988年   14篇
  1987年   12篇
  1986年   14篇
  1985年   24篇
  1984年   24篇
  1983年   13篇
  1982年   13篇
  1981年   6篇
  1980年   9篇
  1979年   9篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1975年   5篇
排序方式: 共有4765条查询结果,搜索用时 15 毫秒
31.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5′-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   
32.
A new protein has been isolated from CaCl2/urea extracts of demineralized bovine bone matrix. This protein has five to six residues of the vitamin K-dependent amino acid, gamma-carboxyglutamic acid (Gla), and we have accordingly designated it matrix Gla protein. Matrix Gla protein is a 15,000 dalton protein whose amino acid composition includes a single disulfide bond. The absence of 4-hydroxyproline in matrix Gla protein demonstrates that it is not a precursor to bone Gla protein, 5,800 dalton protein which has a residue of 4-hydroxyproline at position 9 in its sequence. Matrix Gla protein also does not cross-react with antibodies raised against bone Gla protein.  相似文献   
33.
Cortical bone growth is analyzed for 174 children from a Medieval Christian population at Kulubnarti in the Batn el Hajar of Sudanese Nubia (550–1450 AD ). Using the tibia as a representative long bone, total subperiosteal area, cortical area, medullary area, and percent cortical area at midshaft were calculated. While growth in total and cortical areas, as well as in length, appear to be fairly well maintained, percent cortical area reveals unusual growth patterns which reflect excessive endosteal resorption. Compared to the relative reduction in bone mass which has been observed in malnourished living children, as well as with previously reported evidence for stress in the Kulubnarti population, the present data support an interpretation of nutritionally related stress and of no major diachronic dietary change.  相似文献   
34.
This study is part of an attempt to understand the role of specific cellular activities in the bone resorptive process. Experiments were performed whereby known pharmacological agents were used to inhibit individual modes of osteoclastic activity, such as motility and secretion. The effects of such treatments on bone resorption were assessed by quantitative scanning electron microscopy. The compounds included colchicine, which was used to inhibit osteoclast motility; molybdate ions which were used to selectively inhibit the catalytic activity of secreted acid phosphatase, and omeprazole which was employed to inhibit the secretion of hydrogen ions. All compounds inhibited osteoclastic bone resorption, but singularly affected defined modes of activity. These findings suggest that each mode of osteoclastic activity is essential for the bone resorptive process, and that mode-specific inhibition may provide a means whereby excessive activity of the osteoclast can be regulated in disease.  相似文献   
35.
In a previous paper (Crolet et al., 1993, J. Biomechanics 26, 677–687), a modelling of the mechanical behavior of compact bone was presented, in which the homogenization theory was the basic tool of computation. In this simulation, approximations were used for the modelling of the lamellae and the osteons: the lamella and the osteon were divided into cylindrical sectors, each sector being approximated as a parallelepiped having a periodic structure (fibrous composite for the lamella, superimposition of plates for the osteon). The present study deals with a new model without these approximations. First, it can be proved that the homogenized elasticity tensor for a lamella, which has a non-periodic structure, is obtained at each geometrical point as a homogenized tensor of a periodic problem. Similarly, for the osteonal structure, the components of the homogenized tensor are determined at each point as the result of a periodic homogenization.

The software OSTEON, which is the computational method associated with this model, allows one to obtain a better understanding of the effects of many bony parameters. The obtained results are in accordance with experimental data.  相似文献   

36.
The effect of -alany-L-histidinato zinc (AHZ) on bone cell function was investigated in osteoblastic MC3T3-E1 cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus AHZ (10–7–10–5 M) or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5 M) produced a remarkable increase of alkaline phosphatase activity and protein concentration in osteoblastic cells. Thus increases were seen with the prolonged cultivation (12–21 days). With the culture of 1, 3 and 12 days, the effect of AHZ (10–6 M) to increase alkaline phosphatase activity and protein concentration was more intensive than the effect of zinc sulfate, (10–6 M). The AHZ effects were completely abolished by the presence of cycloheximide (10–6 M), indicating that AHZ stimulates protein synthesis in the cells. The present study suggests that AHZ has a stimulatory effect on cell differentiation, and that this effect is partly involved on protein synthesis in osteoblastic cells.  相似文献   
37.
In a controlled animal experiment the effects of dietary subacute Zn deficiency on growth, Zn concentration, and tissue 42-K distribution were studied. Growth retardation caused lower body weight because both skeletal and heart muscle showed a reduction in cell mass. Zn concentrations were reduced in most tissues, however, they remained unaltered in heart muscle. 42-K activity increased in skeletal muscle and pancreas. We hypothesize the latter reflects the organs rate of metabolism, inducing the exocrine pancreas to increase Zn absorption; in skeletal muscle it may induce also alterations in cell potentiation, causing restless behavior. As suggested by the calculated specific K activity (Bq/mol), the K uptake was highest in liver and bone, high in pancreas and skeletal muscle and low in heart muscle. The latter suggests K retention in heart muscle. Specific activity in plasma and jejunum remained unaltered: K status and absorption seem unaffected. Zn deficiency causes different 42-K activities in the various tissues, that respond by alterations in K metabolism without the induction of K deficiency.  相似文献   
38.
39.
Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction–coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body–containing lacunae with each other and with the outside world. During differentiation from osteoblast to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are (1) osteocytes are actively involved in bone turnover; (2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and (3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations. © 1994 Wiley-Liss, Inc.  相似文献   
40.
Bone mineral density (BMD) in the femoral neck and lumbar spine was measured for 355 postmenopausal 48- to 56-year-old women and the BMD in five different regions in the mandible for 77. All 355 women were also classified according to the size of the masseter muscle. Both skeletal measures and the BMD of the buccal cortex distally from the foramen mentale were compared with the size of the masseter muscle. This study indicates that functional stress, caused by the masseter muscle, is involved in maintaining bone mineral density in edentulous regions of the mandible. Those individuals who are physically active or are bruxists may lose less mineral, after extractions of teeth, from those regions of the jaw bones where the muscles are attached.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号