首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3679篇
  免费   291篇
  国内免费   270篇
  2024年   5篇
  2023年   42篇
  2022年   46篇
  2021年   109篇
  2020年   115篇
  2019年   111篇
  2018年   117篇
  2017年   111篇
  2016年   125篇
  2015年   153篇
  2014年   182篇
  2013年   314篇
  2012年   132篇
  2011年   176篇
  2010年   146篇
  2009年   177篇
  2008年   183篇
  2007年   208篇
  2006年   187篇
  2005年   175篇
  2004年   151篇
  2003年   135篇
  2002年   129篇
  2001年   133篇
  2000年   77篇
  1999年   100篇
  1998年   89篇
  1997年   90篇
  1996年   68篇
  1995年   56篇
  1994年   41篇
  1993年   42篇
  1992年   32篇
  1991年   27篇
  1990年   14篇
  1989年   31篇
  1988年   24篇
  1987年   17篇
  1986年   17篇
  1985年   26篇
  1984年   25篇
  1983年   15篇
  1982年   22篇
  1981年   26篇
  1980年   20篇
  1979年   6篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1973年   2篇
排序方式: 共有4240条查询结果,搜索用时 515 毫秒
91.
《Current biology : CB》2020,30(11):2166-2174.e3
  1. Download : Download high-res image (122KB)
  2. Download : Download full-size image
  相似文献   
92.
Radiotherapy is one of the most important treatments for chest tumours. Although there are plenty of strategies to prevent damage to normal lung tissues, it cannot be avoided with the emergence of radiation‐induced lung injury. The purpose of this study was to investigate the potential radioprotective effects of glucosamine, which exerted anti‐inflammatory activity in joint inflammation. In this study, we found glucosamine relieved inflammatory response and structural damages in lung tissues after radiation via HE staining. Then, we detected the level of epithelial‐mesenchymal transition marker in vitro and in vivo, which we could clearly observe that glucosamine treatment inhibited epithelial‐mesenchymal transition. Besides, we found glucosamine could inhibit apoptosis and promote proliferation of normal lung epithelial cells in vitro caused by radiation. In conclusion, our data showed that glucosamine alleviated radiation‐induced lung injury via inhibiting epithelial‐mesenchymal transition, which indicated glucosamine could be a novel potential radioprotector for radiation‐induced lung injury.  相似文献   
93.
94.
With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra‐specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long‐distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta‐population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.  相似文献   
95.
Background/AimIn many facilities, intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) use intensity-modulated beams, formed by a multi-leaf collimator (MLC). In IMRT and VMAT, MLC and linear accelerator errors (both geometric and dose), can significantly affect the doses administered to patients. Therefore, IMRT and VMAT treatment plans must include the use of patient-specific quality assurance (QA) before treatment to confirm dose accuracy.Materials and methodsIn this study, we compared and analyzed the results of dose verification using a multi-dimensional dose verification system Delta4 PT, an ionization chamber dosimeter, and gafchromic film, using data from 52 patients undergoing head and neck VMAT as the test material.ResultBased on the results of the absolute dose verification for the ionization chamber dosimeter and Delta4 PT, taking an axial view, the upper limit of the 95% confidence interval was 3.13%, and the lower limit was −3.67%, indicating good agreement. These results mean that as long as absolute dose verification for the axial view does not deviate from this range, Delta4 PT can be used as an alternative to an ionization chamber dosimeter for absolute dose verification. When we then reviewed dose distribution verification, the pass rate for Delta4 PT was acceptable, and was less varied than that of gafchromic film.ConclusionThis results in that provided the pass rate result for Delta4 PT does not fall below 96%, it can be used as a substitute for gafchromic film in dose distribution verification. These results indicate that patient-specific QA could be simplified.  相似文献   
96.
PurposeRestricted studies comparing different dose rate parameters are available while ITV-based VMAT lung SBRT planning leads to perform the analysis of the most suitable parameters of the external beams used. The special emphasis was placed on the impact of dose rate on dose distribution variations in target volumes due to interplay effects.MethodsFour VMAT plans were calculated for 15 lung tumours using 6 MV photon beam quality (flattening filter FF vs. flattening filter free FFF beams) and maximum dose rate of 600 MU/min, 1000 MU/min and 1400 MU/min. Three kinds of motion simulations were performed finally giving 180 plans with perturbed dose distributions.Results6FFF-1400 MUs/min plans were characterized by the shortest beam on time (1.8 ± 0.2 min). Analysing the performed motion simulation results, the mean dose (Dmean) is not a sensitive parameter to related interplay effects. Looking for local maximum and local minimum doses, some discrepancies were found, but their significance was presented for individual patients, not for the whole cohort. The same was observed for other verified dose metrics.ConclusionsGenerally, the evaluation of VMAT robustness between FF and FFF concepts against interplay effect showed a negligible effect of simulated motion influence on tumour coverage among different photon beam quality parameters. Due to the lack of FFF beams, smaller radiotherapy centres are able to perform ITV-based VMAT lung SBRT treatment in a safe way. Radiotherapy department having FFF beams could perform safe, fast and efficient ITV-based VMAT lung SBRT without a concern about significance of interplay effects.  相似文献   
97.
BackgroundThe optimal induction treatment in potentially-resectable stage IIIA-N2 NSCLC remains undefined.AimTo compare neoadjuvant high-dose chemoradiotherapy (CRT) to neoadjuvant chemotherapy (CHT) in patients with resectable, stage IIIA-N2 non-small-cell lung cancer (NSCLC).MethodsRetrospective, multicentre study of 99 patients diagnosed with stage cT1-T3N2M0 NSCLC who underwent neoadjuvant treatment (high-dose CRT or CHT) followed by surgery between January 2005 and December 2014.Results47 patients (47.5%) underwent CRT and 52 (52.5%) CHT, with a median follow-up of 41 months. Surgery consisted of lobectomy (87.2% and 82.7%, in the CRT and CHT groups, respectively) or pneumonectomy (12.8% vs. 17.3%). Nodal downstaging (to N1/N0) and Pathologic complete response (pCR; pT0pN0) rates were significantly higher in the CRT group (89.4% vs. 57.7% and 46.8% vs. 7.7%, respectively; p < 0.001)). Locoregional recurrence was significantly lower in the CRT group (8.5% vs. 13.5%; p = 0.047) but distant recurrence rates were similar in the two groups. Median PFS was 45 months (CHT) vs. “not reached” (CRT). Median OS was similar: 61 vs. 56 months (p = 0.803). No differences in grade ≥3 toxicity were observed. On the Cox regression analysis, advanced pT stage was associated with worse OS and PFS (p < 0.001) and persistent N2 disease (p = 0.002) was associated with worse PFS.ConclusionsCompared to neoadjuvant chemotherapy alone, a higher proportion of patients treated with preoperative CRT achieved nodal downstaging and pCR with better locoregional control. However, there were no differences in survival. More studies are needed to know the optimal treatment of these patients.  相似文献   
98.
PurposeThis study compared the positioning accuracy between cone-beam CT (CBCT) and ExacTrac (ETX) for a single-isocenter multiple target stereotactic radiosurgery (SRS) on two TrueBeam STx systems.MethodsA single-isocenter treatment plan was simulated on an anthropomorphic head phantom with six spherical steel ball bearings (BBs). One of the BBs was chosen to be the isocenter. The five off-isocenter targets were located at various distances from the isocenter. MV portal images were generated to evaluate the deviations between the expected and the real center of the targets after CBCT and ETX positioning, respectively.ResultsThe evaluation of the positioning accuracy for the isocenter target showed that CBCT and ETX positioning provided comparable, sub-millimetric results. Deviations in positioning accuracy were also calculated for all other targets, also showing comparable results for CBCT and ETX. Moreover, our study showed that the deviation between CBCT and ETX positioning were in better agreement for TBSTx1 and deviated slightly higher on TBSTx2 (maximum: 1.23 mm at S/I direction), due to a less perfect alignment between the CBCT coordinate system and the ETX coordinate system on TBSTx2 compared to TBSTx1. This study also showed a correlation between the target positioning accuracy and the distance to the isocenter.ConclusionThe positioning accuracy of ETX and CBCT for targets located at isocenter and off-isocenter locations was compared on two treatment machines and found comparable. Our study highlights the importance of a proper calibration procedure, to ensure correct alignment between the CBCT, ETX and machine coordinate systems.  相似文献   
99.
IntroductionOur markerless tumor tracking algorithm requires 4DCT data to train models. 4DCT cannot be used for markerless tracking for respiratory-gated treatment due to inaccuracies and a high radiation dose. We developed a deep neural network (DNN) to generate 4DCT from 3DCT data.MethodsWe used 2420 thoracic 4DCT datasets from 436 patients to train a DNN, designed to export 9 deformation vector fields (each field representing one-ninth of the respiratory cycle) from each CT dataset based on a 3D convolutional autoencoder with shortcut connections using deformable image registration. Then 3DCT data at exhale were transformed using the predicted deformation vector fields to obtain simulated 4DCT data. We compared markerless tracking accuracy between original and simulated 4DCT datasets for 20 patients. Our tracking algorithm used a machine learning approach with patient-specific model parameters. For the training stage, a pair of digitally reconstructed radiography images was generated using 4DCT for each patient. For the prediction stage, the tracking algorithm calculated tumor position using incoming fluoroscopic image data.ResultsDiaphragmatic displacement averaged over 40 cases for the original 4DCT were slightly higher (<1.3 mm) than those for the simulated 4DCT. Tracking positional errors (95th percentile of the absolute value of displacement, “simulated 4DCT” minus “original 4DCT”) averaged over the 20 cases were 0.56 mm, 0.65 mm, and 0.96 mm in the X, Y and Z directions, respectively.ConclusionsWe developed a DNN to generate simulated 4DCT data that are useful for markerless tumor tracking when original 4DCT is not available. Using this DNN would accelerate markerless tumor tracking and increase treatment accuracy in thoracoabdominal treatment.  相似文献   
100.
Medical imaging using X-rays has been one of the most popular imaging modalities ever since the discovery of X-rays 125 years ago. With unquestionable benefits, concerns about radiation risks have frequently been raised. Computed tomography (CT) and fluoroscopic guided interventional procedures have the potential to impart higher radiation exposure to patients than radiographic examinations. Despite technological advances, there have been instances of increased doses per procedure mainly because of better diagnostic information in images. However, cumulative dose from multiple procedures is creating new concerns as effective doses >100 mSv are not uncommon. There is a need for action at all levels. Manufacturers must produce equipment that can provide a quality diagnostic image at substantially lesser dose and better implementation of optimization strategies by users. There is an urgent need for the industry to develop CT scanners with sub-mSv radiation dose, a goal that has been lingering. It appears that a new monochromatic X-ray source will lead to replacement of X-ray tubes all over the world in coming years and will lead to a drastic reduction in radiation doses. This innovation will impact all X-ray imaging and will help dose reduction. For interventional procedures, the likely employment of robotic systems in practice may drastically reduce radiation exposures to operators- but patient exposure will still remain an issue. Training needs always need to be emphasized and practiced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号