首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   17篇
  国内免费   2篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   7篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   13篇
  2013年   29篇
  2012年   12篇
  2011年   17篇
  2010年   7篇
  2009年   18篇
  2008年   23篇
  2007年   10篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   11篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   8篇
  1981年   10篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
91.
4,4′-dithiocyanatostilbene-2,2′-disulfonic acid (DIDS), an inhibitor of the volume-sensitive anion channel, was used to investigate the role of this channel in the stimulation of rat pancreatic β-cells by glucose and by tolbutamide. Glucose-stimulated electrical activity in β-cells was markedly and reversibly inhibited by DIDS. The increase in cytosolic [Ca2+] and stimulated insulin release evoked by glucose were also inhibited by DIDS. In contrast to its inhibitory effect on glucose-induced β-cell activity, DIDS had no effect on electrical activity, the rise in [Ca2+] i or insulin release induced by tolbutamide. DIDS failed to increase β-cell input conductance, an index of whole-cell K ATP channel activity, or the rate of efflux of 86Rb+ from perifused islets, a measure of net K+ permeability. Furthermore, DIDS had no effect on intracellular pH or on regulatory volume increase following exposure of cells to hypertonic solutions, indicating that the effects of DIDS were not the result of inhibition of Cl transport systems. It is suggested that the DIDS-induced repolarization is caused by inactivation of the volume-sensitive anion channel. The stimulation of β-cell electrical and secretory activity by glucose, but not tolbutamide, may therefore involve activation of the anion channel. Received: 30 November 1999/Revised: 23 June 2000  相似文献   
92.
Abstract A ``double-water-film electrode technique' has been developed for the long-term characterization of the electrical properties across the interface between the nodal (N) and internodal (A or B) cells and the vacuole along the length of an internode of Chara as a function of time and temperature. The electrode unit consisted of a pair of the water-film electrodes described elsewhere (Chilcott 1988; Chilcott and others 1983; Coster and others 1984; Lucas 1985; and Ogata 1983). The distance between two water-film probes was fixed at 1.0 cm. By scanning the electrode unit, the spatial variations in electrical resistance and capacitance along the longitudinal axis of Chara were observed. Analysis was performed by applying an electrical equivalent circuit for the biomembrane (Philippson 1921). Across the internode (−A or −B)/central nodal cells interface, the specific parallel resistance (Rm) and the parallel capacitance (Cm) at 20°C were 30 ± 5 × 10−3Ωm2 and 1.5 ± 0.5 × 10−1Fm−2 (at 30 Hz), respectively. And the series resistance, corresponding to the vacuole of the internode was 8 × 10−3Ωm2. Study of temperature dependencies of Rm and Cm suggested that a dynamic homeostatic regulation was operating at the interface where numerous plasmodesmata were observed with an electron microscope (Pickett-Heaps 1967; Spanswick and Costerton 1967). Assuming that the individual cylinder of plasmodesma was filled only with cytoplasm, the number of plasmodesma per interface was estimated at 2.6 × 105. Received 19 January 2000; accepted 16 March 2000  相似文献   
93.
Movements in muscles are generated by the myosins which interact with the actin filaments. In this paper we present an electric theory to describe how the chemical energy is first stored in electrostatic form in the myosin system and how it is then released and transformed into work. Due to the longitudinal polarized molecular structure with the negative phosphate group tail, the ATP molecule possesses a large electric dipole moment (p(0)), which makes it an ideal energy source for the electric dipole motor of the actomyosin system. The myosin head contains a large number of strongly restrained water molecules, which makes the ATP-driven electric dipole motor possible. The strongly restrained water molecules can store the chemical energy released by ATP binding and hydrolysis processes in the electric form due to their myosin structure fixed electric dipole moments (p(i)). The decrease in the electric energy is transformed into mechanical work by the rotational movement of the myosin head, which follows from the interaction of the dipoles p(i) with the potential field V(0) of ATP and with the potential field Psi of the actin. The electrical meaning of the hydrolysis reaction is to reduce the dipole moment p(0)-the remaining dipole moment of the adenosine diphosphate (ADP) is appropriately smaller to return the low negative value of the electric energy nearly back to its initial value, enabling the removal of ADP from the myosin head so that the cycling process can be repeated. We derive for the electric energy of the myosin system a general equation, which contains the potential field V(0) with the dipole moment p(0), the dipole moments p(i) and the potential field psi. Using the previously published experimental data for the electric dipole of ATP (p(0) congruent with 230 debye) and for the amount of strongly restrained water molecules (N congruent with 720) in the myosin subfragment (S1), we show that the Gibbs free energy changes of the ATP binding and hydrolysis reaction steps can be converted into the form of electric energy. The mechanical action between myosin and actin is investigated by the principle of virtual work. An electric torque always appears, i.e. a moment of electric forces between dipoles p(0) and p(i)(/M/ > or = 16 pN nm) that causes the myosin head to function like a scissors-shaped electric dipole motor. The theory as a whole is illustrated by several numerical examples and the results are compared with experimental results.  相似文献   
94.
Effects of mild and severe soil drought on the water status of needles, chlorophyll a fluorescence, shoot electrical admittance, and concentrations of photosynthetic pigments in needles of seedlings of Picea abies (L.) Karst. were examined under controlled greenhouse conditions. Drought stress reduced shoot admittance linearly with a decrease in shoot water potential (w) and increase in water deficit (WD) and led to a decrease in concentrations of chlorophyll a, b and carotenoids. Severe water stress (shoot w=–2.4 MPa) had a negative effect on chlorophyll a fluorescence parameters including PSII activity (Fv/Fm), and the vitality index (Rfd). Variations in these parameters suggest an inhibition of the photosynthetic electron transport in spruce needles. Water stress led to a decrease in the mobility of electrolytes in tissues, which was reflected by decreased shoot electrical admittance. After re-watering for 21 days the WD in needles decreased and the shoot water potential increased. In the re-watered plants, the chloroplast function was restored and chlorophyll a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in the seedlings triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. We conclude that the shoot electrical admittance and photosynthetic electron transport in leaves are closely linked to changes in water status and their decrease is among the initial responses of seedlings to water stress.  相似文献   
95.
The resealing process of lipid bilayer membranes after reversible electrical breakdown was investigated using two voltage pulses switched on together. Electrical breakdown of the membranes was induced with a voltage pulse of high intensity and short duration. The time course of the change in membrane conductance after the application of the high (short) voltage pulse was measured with a longer voltage pulse of low amplitude. The decrease in membrane conductance during the resealing process could be fitted to a single exponential curve with a time constant of 10-2 μs in the temperature range between 2 and 20°C. The activation energy for this exponential decay process was found to be about 50 kJ/mol, which might indicate a diffusion process. Above 25°C the resealing process is controlled by two exponential processes.The data obtained for the time course of the resealing process can be explained in terms of pore formation in the membranes in response to the high electrical field strength. A radius of about 4 nm is calculated for the initial pore size. From the assumed exponential change of the pore area with progressive resealing time a diffusion constant of 10?8 cm2/s for lateral lipid diffusion can be estimated.  相似文献   
96.
It has been proposed that the increase produced by insulin in electrical potential differences across membranes of target cells may be a mechanism by which the cell surface insulin-receptor complex causes at least some of the metabolic effects of insulin. If insulin-induced hyperpolarization is a transducer of common effector responses it must precede those responses. The problem has not been addressed previously, so that rapid responses to insulin have not been sought. Two methods were used. In one method, the bathing solution was changed rapidly so as to include insulin in supramaximal concentrations, and a series of measurements of membrane potentials, Er, were made. Insulin hyperpolarized by 9.4 mV within 1 min. In the other method, nanoliter amounts of highly concentrated insulin solution were ejected from a micropipette onto the surface of an impaled muscle fiber. In 21 out of 32 insulin injections, hyperpolarization occurred within 1 s; in 11 control injections there was no change. This is the most rapid response to insulin yet reported, and is consistent with the hypothesis that insulin-induced hyperpolarization may transduce effector responses.  相似文献   
97.
In this study, we investigated the metabolic responses of potato tissue induced by pulsed electric field (PEF). Potato tissue was subjected to field strengths ranging from 30 to 500 V/cm, with a single rectangular pulse of 10 μs, 100 μs, or 1 ms. Metabolic responses were monitored using isothermal calorimetry, changes on electrical resistance during the delivery of the pulse, as well as impedance measurements. Our results show that the metabolic response involves oxygen consuming pathways as well as other unidentified events that are shown to be insensitive to metabolic inhibitors such as KCN and sodium azide. The metabolic response is strongly dependent on pulsing conditions and is independent of the total permeabilization achieved by the pulse. Evidence shows that calorimetry is a simple and powerful method for exploring conditions for metabolic stimulation, providing information on metabolic responses that can not be obtained from electrical measurements. This study set the basis for further investigations on defense-related consequences of PEF-induced stress.  相似文献   
98.
《Reproductive biology》2014,14(3):234-237
The purpose of this study was to investigate whether fertile or non-fertile inseminations (AI) in synchronized ewes are correlated with the electrical resistance of cervical mucus (ERCM) and the ovarian steroid concentration. AIs were performed either at fixed-time (group A) or after estrus detection (group B). Retrospective analysis revealed that at AI, pregnant ewes had lower ERCM values and progesterone concentrations than non-pregnant ones (p < 0.05). It appears that ERCM may be used as an additional index for fertility enhancement of inseminated ewes.  相似文献   
99.
The tobacco whitefly Bemisia tabaci is one of the most devastating pests worldwide. Current management of B. tabaci relies upon the frequent applications of insecticides. In addition to direct mortality by typical acute toxicity (lethal effect), insecticides may also impair various key biological traits of the exposed insects through physiological and behavioral sublethal effects. Identifying and characterizing such effects could be crucial for understanding the global effects of insecticides on the pest and therefore for optimizing its management in the crops. We assessed the effects of sublethal and low-lethal concentrations of four widely used insecticides on the fecundity, honeydew excretion and feeding behavior of B. tabaci adults. The probing activity of the whiteflies feeding on treated cotton seedlings was recorded by an Electrical Penetration Graph (EPG). The results showed that imidacloprid and bifenthrin caused a reduction in phloem feeding even at sublethal concentrations. In addition, the honeydew excretions and fecundity levels of adults feeding on leaf discs treated with these concentrations were significantly lower than the untreated ones. While, sublethal concentrations of chlorpyrifos and carbosulfan did not affect feeding behavior, honeydew excretion and fecundity of the whitefly. We demonstrated an antifeedant effect of the imidacloprid and bifenthrin on B. tabaci, whereas behavioral changes in adults feeding on leaves treated with chlorpyrifos and carbosulfan were more likely caused by the direct effects of the insecticides on the insects'' nervous system itself. Our results show that aside from the lethal effect, the sublethal concentration of imidacloprid and bifenthrin impairs the phloem feeding, i.e. the most important feeding trait in a plant protection perspective. Indeed, this antifeedant property would give these insecticides potential to control insect pests indirectly. Therefore, the behavioral effects of sublethal concentrations of imidacloprid and bifenthrin may play an important role in the control of whitefly pests by increasing the toxicity persistence in treated crops.  相似文献   
100.
Muscle fatigue may be a precursor to workplace musculoskeletal disorders, with the low back resulting in the most frequently injured body part. Work/rest ratios have an effect on fatigue due to the amount of rest allowance provided following muscle contraction. This study explored various work/rest ratios by electrically stimulating rat medial longissimus muscles. A 3 V stimulus with 0.2 ms pulse duration was applied at a frequency of 30 Hz. There were four stimulation groups consisting of the following duty cycles (DC) and cycle times (CT): DC25%:CT20s, DC25%:CT280s, DC75%:CT20s, and DC75%:CT180s. Muscle fatigue was measured as a decrease in M-wave amplitude and area, and an increase in M-wave duration. The results indicated that fatigue occurred immediately in each of the groups. The higher duty cycle and shorter cycle time group resulted in significantly greater fatigue than the lower duty cycle and longer cycle time group, as measured by increased M-wave amplitude and area. A longer M-wave duration was observed in the high duty cycle long cycle time group. This suggests that the combination of low duty cycle and long cycle times leads to less fatigue. In high duty cycle scenarios, short cycle times result in less fatigue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号