首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2285篇
  免费   246篇
  国内免费   504篇
  2023年   51篇
  2022年   46篇
  2021年   47篇
  2020年   55篇
  2019年   70篇
  2018年   73篇
  2017年   133篇
  2016年   156篇
  2015年   115篇
  2014年   132篇
  2013年   146篇
  2012年   65篇
  2011年   94篇
  2010年   99篇
  2009年   153篇
  2008年   160篇
  2007年   149篇
  2006年   130篇
  2005年   127篇
  2004年   133篇
  2003年   119篇
  2002年   96篇
  2001年   68篇
  2000年   56篇
  1999年   57篇
  1998年   57篇
  1997年   55篇
  1996年   34篇
  1995年   31篇
  1994年   34篇
  1993年   27篇
  1992年   38篇
  1991年   42篇
  1990年   18篇
  1989年   24篇
  1988年   16篇
  1987年   17篇
  1986年   11篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   8篇
  1981年   7篇
  1980年   9篇
  1979年   10篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1973年   5篇
排序方式: 共有3035条查询结果,搜索用时 15 毫秒
101.
The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf–Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper.  相似文献   
102.
An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology‐based predictions accounted for 28–56% of the interindividual variance in prey type. This was larger than the 12–24% of variance that could be explained solely on the basis of body size.  相似文献   
103.
We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RIs) was negatively correlated with the strength of natural selection (RIm), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage.  相似文献   
104.
The trypsin inhibitors in buckwheat seeds were isolated by affinity chromatography on trypsin-Sepharose 4B, and the components were fractionated by chromatography on DEAE-Sepharose CL-6B. The major components, inhibitors I, II and III, were found to be homogeneous proteins with molecular weight of about 8,000. Trypsin inhibitory activity was more pronounced than the chymotrypsin inhibitory activity in all the inhibitor preparation obtained. The three major inhibitors had similar amino acid compositions and had no detectable amounts of tryptophan and carbohydrate. A high level of acidic and basic amino acid residues and a low level of methionine, tyrosine and phenylalanine residues characterized the inhibitors. Although the inhibitors I and II were particularly thermostable, inhibitor III, the most abundant component, was shown to be relatively heat-labile.  相似文献   
105.
Most large‐bodied wildlife populations in sub‐Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat complexity may change in the future is critical to the conservation of large mammal populations. Our study shows the importance of maintaining flood levels in the Okavango Delta and how the loss of seasonal floodplains will be compounded by changes in habitat configuration, forcing zebra to change their relative space use and enlarge home ranges, leading to increased competition for key resources and population declines.  相似文献   
106.
When organisms perform a single task, selection leads to phenotypes that maximize performance at that task. When organisms need to perform multiple tasks, a trade‐off arises because no phenotype can optimize all tasks. Recent work addressed this question, and assumed that the performance at each task decays with distance in trait space from the best phenotype at that task. Under this assumption, the best‐fitness solutions (termed the Pareto front) lie on simple low‐dimensional shapes in trait space: line segments, triangles and other polygons. The vertices of these polygons are specialists at a single task. Here, we generalize this finding, by considering performance functions of general form, not necessarily functions that decay monotonically with distance from their peak. We find that, except for performance functions with highly eccentric contours, simple shapes in phenotype space are still found, but with mildly curving edges instead of straight ones. In a wide range of systems, complex data on multiple quantitative traits, which might be expected to fill a high‐dimensional phenotype space, is predicted instead to collapse onto low‐dimensional shapes; phenotypes near the vertices of these shapes are predicted to be specialists, and can thus suggest which tasks may be at play.  相似文献   
107.
This study analyses three decades of the peculiar bloom-formation history of the potentially toxic invasive planktonic dinoflagellates Prorocentrum minimum (Pavillard) Schiller in the SW Baltic Sea. We tested a research hypothesis that the unexpectedly long delay (nearly two decades) in population development of P. minimum prior to its first bloom was caused by competition with one or several closely related native dinoflagellate species due to ecological niche partitioning which hampered the spread and bloom-forming potential of the invader. We applied the ecological niche concept to a large, long-term phytoplankton database and analysed the invasion history and population dynamics of P. minimum in the SW Baltic Sea coastal waters using the data on phytoplankton composition, abundance and biomass. The ecological niche dimensions of P. minimum and its congener P. balticum were identified as the optimum environmental conditions for the species during the bloom events based on water temperature, salinity, pH, concentration of nutrients (PO43−; total phosphorus, TP; total nitrogen, TN; SiO44−), TN/TP-ratio and habitat type. The data on spatial distribution and ecological niche dimensions of P. minimum have contributed to the development of the “protistan species maximum concept”. High microplankton diversity at critical salinities in the Baltic Sea may be considered as a possible reason for the significant niche overlap and strong competitive interactions among congeners leading to prolonged delay in population growth of P. minimum preceding its first bloom in the highly variable brackishwater environment.  相似文献   
108.
The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries.  相似文献   
109.
110.
Indicator species (IS) are used to monitor environmental changes, assess the efficacy of management, and provide warning signals for impending ecological shifts. Though widely adopted in recent years by ecologists, conservation biologists, and environmental practitioners, the use of IS has been criticized for several reasons, notably the lack of justification behind the choice of any given indicator. In this review, we assess how ecologists have selected, used, and evaluated the performance of the indicator species. We reviewed all articles published in Ecological Indicators (EI) between January 2001 and December 2014, focusing on the number of indicators used (one or more); common taxa employed; terminology, application, and rationale behind selection criteria; and performance assessment methods. Over the last 14 years, 1914 scientific papers were published in EI, describing studies conducted in 53 countries on six continents; of these, 817 (43%) used biological organisms as indicators. Terms used to describe organisms in IS research included “ecological index”, “environmental index”, “indicator species”, “bioindicator”, and “biomonitor,” but these and other terms often were not clearly defined. Twenty percent of IS publications used only a single species as an indicator; the remainder used groups of species as indicators. Nearly 50% of the taxa used as indicators were animals, 70% of which were invertebrates. The most common applications behind the use of IS were to: monitor ecosystem or environmental health and integrity (42%); assess habitat restoration (18%); and assess effects of pollution and contamination (18%). Indicators were chosen most frequently based on previously cited research (40%), local abundance (5%), ecological significance and/or conservation status (13%), or a combination of two or more of these reasons (25%). Surprisingly, 17% of the reviewed papers cited no clear justification for their choice of indicator. The vast majority (99%) of publications used statistical methods to assess the performance of the selected indicators. This review not only improves our understanding of the current uses and applications of IS, but will also inform practitioners about how to better select and evaluate ecological indicators when conducting future IS research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号