首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13284篇
  免费   1179篇
  国内免费   1014篇
  2024年   36篇
  2023年   289篇
  2022年   276篇
  2021年   624篇
  2020年   675篇
  2019年   898篇
  2018年   621篇
  2017年   409篇
  2016年   480篇
  2015年   533篇
  2014年   806篇
  2013年   948篇
  2012年   627篇
  2011年   830篇
  2010年   604篇
  2009年   670篇
  2008年   711篇
  2007年   733篇
  2006年   643篇
  2005年   567篇
  2004年   501篇
  2003年   432篇
  2002年   418篇
  2001年   289篇
  2000年   244篇
  1999年   203篇
  1998年   193篇
  1997年   173篇
  1996年   160篇
  1995年   113篇
  1994年   103篇
  1993年   99篇
  1992年   74篇
  1991年   57篇
  1990年   64篇
  1989年   48篇
  1988年   38篇
  1987年   29篇
  1986年   37篇
  1985年   40篇
  1984年   38篇
  1983年   29篇
  1982年   27篇
  1981年   15篇
  1980年   22篇
  1979年   7篇
  1978年   10篇
  1977年   6篇
  1976年   8篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
41.
Halobacteria spontaneously reverse their swimming direction about every 10 s. This periodicity can be altered by light stimuli. We found that temporal exponential changes in light intensity, depending on wavelength and sign, lengthened or shortened the intervals between reversals. Within a limited range of steepness, light gradients enforced a new stable periodicity upon the system. Outside this range, they caused period doubling or induced a sequence of reversal events without any obvious regularity. An analysis of a functional relationship between apparently irregular periods by plotting each period as a function on the preceding one yielded a clearly discernible non-random structure, which shows some similarities to the one obtained by a model calculation for a periodically perturbed limit cycle oscillator. These results indicate that external forcing of the system may generate chaos. When the decay of intracellular sensory signals is delayed by inhibition of protein methylation the transition from periodic to aperiodic behavior occurs at a lower steepness of the gradient. We therefore assume that the generation of either periodic or deterministic chaotic behavior is determined by the relation between the signal lifetime and the frequency of stimulus inputs. The strong indications for transitions from periodic to chaotic behavior can be regarded as a further support of our hypothesis that the behavioral pattern of Halobacterium is controlled by an endogeneous oscillator.  相似文献   
42.
Archaeoglobus fulgidus is an extremely thermophilic archaebacterium that can grow at the expense of lactate oxidation with sulfate to CO2 and H2S. The organism contains coenzyme F420, tetrahydromethanopterin, and methanofuran which are coenzymes previously thought to be unique for methanogenic bacteria. We report here that the bacterium contains methylenetetrahydromethanopterin: F420 oxidoreductase (20 U/mg), methenyltetrahydromethanopterin cyclohydrolase (0.9 U/mg), formyltetrahydromethanopterin: methanofuran formyltransferase (4.4 U/mg), and formylmethanofuran: benzyl viologen oxidoreductase (35 mU/mg). Besides these enzymes carbon monoxide: methyl viologen oxidoreductase (5 U/mg), pyruvate: methyl viologen oxidoreductase (0.7 U/mg), and membranebound lactate: dimethylnaphthoquinone oxidoreductase (0.1 U/mg) were found. 2-Oxoglutarate dehydrogenase, which is a key enzyme of the citric acid cycle, was not detectable. From the enzyme outfit it is concluded that in A. fulgidus lactate is oxidized to CO2 via a modified acetyl-CoA/carbon monoxide dehydrogenase pathway involving C1-intermediates otherwise only used by methanogenic bacteria.Non-standard abbreviations APS adenosine 5-phosphosulfate - BV benzyl viologen - DCPIP 2,6-dichlorophenolindophenol - DMN 2,3-dimethyl-1,4-naphthoquinone - DTT DL-1,4-dithiothreitol - H4F tetrahydrofolate - H4MPT tetrahydromethanopterin - CH2 H4MPT, methylene-H4MPT - CH H4MPT, methenyl-H4MPT - Mes morpholinoethane sulfonic acid - MFR methanofuran - Mops morpholinopropane sulfonic acid - MV methyl viologen - Tricine N-tris(hydroxymethyl)-methylglycine - U mol product formed per min  相似文献   
43.
Skeletal muscle triads are possessing the whole set of enzymes of the phosphatidylinositol (PI)-linked signal generating pathway, PI-kinase, PI(4)P-kinase, and PI(4,5)P2-phospholipase C (PLC). The activities of these enzymes are comparable to those found in other cell types for which a functional role of the PI-pathway in intracellular signal transduction has been established. For skeletal muscle an unequivocal function and an initiating signal for Ins(1,4,5)P3-liberation is still unknown. However, the observed Ca-dependency of PLC activity suggests that here Ins(1,4,5)P3 production is a consequence rather than a cause of increasing cytosolic Ca2+. Recently, the glycolytic enzyme aldolase, whose activity can be modulated by inositol polyphosphates, has been localized in the triadic structure. The enzyme which has a high affinity to Ins(1,4)P2, Ins(1,4,5)P3 and Ins(1,3,4,5)P4, seems to be compartmentalized to the junctional foot structure from which it is released upon binding of these molecules. This phenomenon could reflect a capability for regulation of the glycolytic flux even for aldolase, especially if a non steady-state situation in the junctional gap is considered. Meanwhile we have accumulated evidence for the operation of a partial glycolytic sequence in the junctional region established by the enzymes aldolase, glyceraldehyde-3-P (GAP) dehydrogenase and phosphoglycerate kinase. This system is able to produce ATP upon oxidation of GAP and could be, because of the inositol polyphosphate-sensing abilities of aldolase, a target for the membrane associated PI-pathway. The ATP production is however transient which indicates the coupling to an ATP hydrolyzing reaction. Thus, it appears that the ATP produced by the membrane associated system is effectively utilized by an ATP consuming membrane localized system like PI-metabolism or protein kinases. There are indications that exogeneously added ATP does not equilibrate with the ATP synthesized in the junctional region which suggests an effective structural or kinetical compartmentalization of this system. Therefore it is hypothesized that the ATP synthesized by the membrane associated glycolytic sequence is utilized in membrane localized reactions.  相似文献   
44.
Enzyme measurements were carried out with crude cell-free extracts of the propionate oxidizing coculture of Syntrophobacter wolinii and Desulfovibrio G11. Using cell-free extracts of a pure culture of Desulfovibrio G11 as a blank, most of the enzymes involved in the methylmalonyl-CoA pathway for propionate oxidation, including a propionyl-CoA: oxaloacetate transcarboxylase, were demonstrated in S. wolinii.  相似文献   
45.
Growth of Propionibacterium freudenreichii was studied with glycerol, lactate, and propionate as energy sources and a three-electrode poised-potential amperometric electrode system with hexacyanoferrate (III) as mediator. In batch culture experiments with glycerol and lactate as substrates, hexacyanoferrate (III) was completely reduced. Growth yields increased and the fermentation patterns were shifted towards higher acetate formation with increasing hexacyanoferrate (III) concentrations (0.25–8.0 mM). In experiments with regulated electrodes, glycerol, lactate, and propionate were oxidized to acetate and CO2, and the electrons were quantitatively transferred to the working electrode. Growth yields of 29.0, 13.4 and 14.2 g cell material per mol were calculated, respectively. The high cell yield obtained during propionate oxidation cannot be explained solely by substrate level phosphorylation indicating that additional energy was conserved via electron transport phosphorylation. Furthermore, this result indicated complete reversibility of the methyl-malonyl-CoA pathway in propionic acid bacteria.  相似文献   
46.
A 1330 base-pair fragment of a 16S rRNA gene has been amplified, cloned and sequenced. Comparison to other 16S rRNA sequences of eubacteria showed that P. niger represents a deep branch within the subdivision "Gram-positive with Gram-negative cell walls". It is not related to peptostreptococci, representatives of this genus studied so far are more closely related to clostridia.  相似文献   
47.
The Drosophila PROS-28.1 gene is a member of the proteasome gene family   总被引:4,自引:0,他引:4  
In the present communication, we report the identification of a new gene family which encodes the protein subunits of the proteasome. The proteasome is a high-Mr complex possessing proteolytic activity. Screening a Drosophila λgt11 cDNA expression library with the proteasome-specific antibody N19-28 we isolated a clone encoding the 28-kDa No. 1 proteasome protein subunit. In accordance with the nomenclature of proteasome subunits in Drosophila, the corresponding gene is designated PROS-28.1, and it encodes an mRNA of 1.1 kb with an open reading frame of 249 amino acids (aa). Genomic Southern-blot hybridization shows PROS-28.1 to be a member of a family of related genes. Analysis of the predicted aa sequence reveals a potential nuclear targeting signal, a potential site for tyrosine kinase and a potential cAMP/cGMP-dependent phosphorylation site. The aa sequence comparison of the products of PROS-28.1 and PROS-35 with the C2 proteasome subunit of rat shows a strong sequence similarity between the different proteasome subunits. The data suggest that at least a subset of the proteasome-encoding genes belongs to a family of related genes (PROS gene family) which may have evolved from a common ancestral PROS gene.  相似文献   
48.
The release of endogenous amino acids from depolarized rat hippocampal mossy fiber synaptosomes was investigated to assess the possible role(s) of glutamate and aspartate in mediating the excitatory mossy fiber synaptic input. The relative proportions of prodynorphin-derived peptides concomitantly released with amino acids were also determined to further characterize the biochemical basis for mossy fiber synaptic transmission. Of the 18 amino acids shown to be present in superfusate fractions by liquid chromatographic analysis, only glutamate was released at a significantly enhanced rate from K+-stimulated (35 mM KCl) mossy fiber nerve endings. The rates of glutamate and aspartate release were increased by 360±27% and 54±12% over baseline respectively. However, the K+-evoked release of glutamate was substantially more Ca2+-dependent (80%) than was the release of aspartate (49%). The veratridine (45 M)-evoked release of both acidic amino acids was entirely blocked by 1 M tetrodotoxin. Depolarization (45 mM KCl) also stimulated the release of the four prodynorphin (Dyn) products examined, in a rank order of Dyn B >> Dyn A(1–17) > Dyn A(1–8) >> Dyn A(1–13), with Dyn B efflux increasing by more than 5-fold over baseline values. These results suggest that the predominant excitatory amino acid in hippocampal mossy fiber synaptic transmission may be glutamate and that this synaptic input may be modulated by at least four different products of prodynorphin processing.The animals involved in this study were procured, maintained and used in accordance with the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources—National Research Council.  相似文献   
49.
大鼠隔—海马通路损伤对海马内递质含量及酶活力的影响   总被引:3,自引:0,他引:3  
汪家政  柳川 《生理学报》1990,42(3):289-294
单侧切断大鼠海马缴和部分穹窿可使海马部分去神经。损伤后7d,海马内胆碱能系统中乙酰胆碱(ACh)含量下降72.5%,胆碱乙酰基转移酶(ChAT)活力下降45.7%,胆碱酯酶活力下降52.2%,在单胺能系统中,去甲肾上腺素(NA)含量下降16.3%,多巴胺(DA)含量下降31.3%,5-羟色胺含量下降30.3%。在损伤过程中,海马内氨基酸含量没有改变。实验结果表明,海马缴和穹窿是脑内胆碱能和单胺能传入神经到达海马靶区的部分共同通路。  相似文献   
50.
The adenylyl cyclase system of the yeast Saccharomyces cerevisiae contains the CYR1 polypeptide, responsible for catalyzing formation of cAMP from ATP, and two RAS polypeptides, responsible for stimulation of cAMP synthesis by guanine nucleotides. We have obtained rabbit antibodies that recognize the CYR1 protein. Antibodies were raised against synthetic oligopeptides and against a recombinant beta-galactosidase/CYR1 fusion protein. These antibodies have allowed the identification of the CYR1 gene product as a 205 kDa protein. Treatment with trypsin (2 micrograms/ml) reduced the size of the CYR1 protein from 205 to 155 kDa and produced an activated enzyme which no longer responded to guanine nucleotides. This result is consistent with a model in which adenylyl cyclase activity is regulated by an inhibitory domain near the amino-terminus of the CYR1 protein. This model is further supported by the finding that adenylyl cyclase activity is also markedly elevated and unresponsive to guanine nucleotides in mutant yeast strains that express only the carboxy-terminal half of the CYR1 protein. Treatment with high trypsin concentrations (greater than 10 micrograms/ml) caused release of adenylyl cyclase activity from the membrane. Comparison of immunoreactive CYR1 fragments released by trypsin and membrane bound genetically altered proteins suggests that the CYR1 protein is attached to the membrane via a separate trypsin sensitive anchoring protein rather than via a membrane anchoring domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号