首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   906篇
  免费   34篇
  国内免费   19篇
  2023年   5篇
  2022年   10篇
  2021年   15篇
  2020年   15篇
  2019年   18篇
  2018年   30篇
  2017年   16篇
  2016年   15篇
  2015年   27篇
  2014年   70篇
  2013年   51篇
  2012年   49篇
  2011年   74篇
  2010年   80篇
  2009年   76篇
  2008年   78篇
  2007年   56篇
  2006年   32篇
  2005年   24篇
  2004年   21篇
  2003年   19篇
  2002年   21篇
  2001年   19篇
  2000年   15篇
  1999年   17篇
  1998年   10篇
  1997年   9篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   7篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有959条查询结果,搜索用时 15 毫秒
21.
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.  相似文献   
22.
Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16 nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.  相似文献   
23.
24.
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.  相似文献   
25.
DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and dissociation of inert ATM dimers into monomers that are catalytically active. Using single-particle electron microscopy (EM), we determined the structure of dimeric ATM in its resting state. The EM map could accommodate the crystal structure of the N-terminal truncated mammalian target of rapamycin (mTOR), a closely related enzyme of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, allowing for the localization of the N- and the C-terminal regions of ATM. In the dimeric structure, the actives sites are buried, restricting the access of the substrates to these sites. The unanticipated domain organization of ATM provides a basis for understanding its mechanism of inhibition.  相似文献   
26.
O'Mara ML  Tieleman DP 《FEBS letters》2007,581(22):4217-4222
We exploit the biochemical and sequence similarity between Staphylococcus aureus Sav1866 and P-glycoprotein to develop a homology model of P-glycoprotein representing an ATP-bound state, which captures the major features of the low-resolution EM structure and is consistent with cysteine mutagenesis studies. Using insights from the MalK crystal structures and BtuCD simulations, we model two nucleotide-free conformations. Conformational changes are characterized by pincering rigid-body rotations of the nucleotide-binding domains, inducing transmembrane domain reorganizations which correspond to the two lowest frequency normal modes of the protein. These conformations (see supplementary material) may characterize some of the major steps in the nucleotide catalytic cycle.  相似文献   
27.
AC70R1-504 Escherichia coli mutants possess a glgC* gene with a nucleotide change resulting in a premature stop codon that renders a truncated, inactive form of GlgC. Cells over-expressing the wild type glgC, but not those over-expressing the AC70R1-504 glgC*, accumulated high ADPglucose and glycogen levels. AC70R1-504 mutants accumulated glycogen, whereas DeltaglgCAP deletion mutants lacking the whole glycogen biosynthetic machinery displayed a glycogen-less phenotype. AC70R1-504 cells with enhanced glycogen synthase activity accumulated high glycogen levels. By contrast, AC70R1-504 cells with high ADPG hydrolase activity accumulated low glycogen. These data further confirm that enterobacteria possess various sources of ADPglucose linked to glycogen biosynthesis.  相似文献   
28.
The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20–30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.  相似文献   
29.
Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.  相似文献   
30.
Mycoplasma pneumoniae forms an attachment organelle at one cell pole, binds to the host cell surface, and glides via a unique mechanism. A 170-kDa protein, P1 adhesin, present on the organelle surface plays a critical role in the binding and gliding process. In this study, we obtained a recombinant P1 adhesin comprising 1476 amino acid residues, excluding the C-terminal domain of 109 amino acids that carried the transmembrane segment, that were fused to additional 17 amino acid residues carrying a hexa-histidine (6?×?His) tag using an Escherichia coli expression system. The recombinant protein showed solubility, and chirality in circular dichroism (CD). The results of analytical gel filtration, ultracentrifugation, negative-staining electron microscopy, and small-angle X-ray scattering (SAXS) showed that the recombinant protein exists in a monomeric form with a uniformly folded structure. SAXS analysis suggested the presence of a compact and ellipsoidal structure rather than random or molten globule-like conformation. Structure model based on SAXS results fitted well with the corresponding structure obtained with cryo-electron tomography from a closely related species, M. genitalium. This recombinant protein may be useful for structural and functional studies as well as for the preparation of antibodies for medical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号